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ABSTRACT 
Route planning devices have become a ubiquitous system on our 
lives. However, they are not normally used when travelling inside 
a city since the system is unaware of city’s transit. Although, there 
are some systems that are aware of transit, many follow a reactive 
approach, thus only re-routing drivers after a traffic jam occurs. In 
this paper, we propose an algorithm that pro-actively tries to 
distribute possible routes for real-time city demand without the 
need to know in advance the origin and destination of drivers, thus 
eliminating the privacy concern. Our method is based on the 
usage of an inverted Ant Colony Optimization algorithm that 
allows a better vehicle distribution, optimizing the global 
efficiency of the road network. Results show that our method is 
able to perform better when compared to Shortest Time and 
Shortest Distance algorithms. 

 

Categories and Subject Descriptors 
.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence – 
intelligent agents, multi-agent systems.  

General Terms 
Algorithms, Measurement, Experimentation, Theory. 

Keywords 
Experimentation, Simulation, Traffic, MAS, Ant Colony 
Optimization, Agent Behavior, Artificial Intelligence. 

 

1. INTRODUCTION 
In this paper, we will study a way to influence drivers using an 
algorithm that pro-actively tries to distribute possible routes. The 
study of urban traffic is an increasingly important field given that 
it is necessary in order to explore new traffic-control strategies 
and to make important decisions in urban planning. Traffic 
simulation can help traffic engineers by providing a cost-effective 
way to model traffic flow in a realistic manner and can be used to 
predict these previously referred consequences and to understand 
certain traffic phenomena, without the overhead of costly 
infrastructure changes. 

As previously referred, our purpose is to influence drivers and 
reduce traffic congestion and consequently to reduce average 
travel time, through traffic simulation. To accomplish this we use 
a multi-agent system composed of multiple interacting intelligent 
agents. Our strategy uses an inverted version of Ant Colony 
Optimization (ACO) algorithm in order to distribute drivers more 
evenly along the network. Our main contributions are: 

– a distributed Inverted Ant Colony algorithm;  

– the algorithm pro-actively distributes routes for real-time city 
demand; 

– the algorithm does not require knowledge about the origin and 
destination of drivers. 

The remainder of this paper is organized as follows. In section 2 
we present the state of the art on driver's behavior. Section 3 
describes the tool used in the development of this work. Section 4 
explains the developed architecture, experiments and assumptions. 
Section 5 presents the results and in Section 6 the results are 
discussed. In Section 7, we present the final conclusions and in 
Section 8, the paper concludes with remarks for future work. 

 

2. STATE OF THE ART 
Dorigo and Caro [1] proposed a definition for the Ant Colony 
Optimization (ACO) meta-heuristic. ACO algorithms consists of 
using a population of ants to collectively solve an optimization 
problem and can be used to discover minimum cost paths through 
a certain graph, while respecting specific constraints. Let G = (C, 
L) be the graph related to a certain optimization problem. C 
represents the set of components that exist in the graph and L are 
the connections between these components. The solutions to that 
optimization problem can be defined as feasible paths on the 
graph G. While searching for the shortest path, ants deposit 
pheromone in the traversed route. This leaves pheromone trails 
that encode a long-term memory regarding the search process. 
The arcs of the graph might also have a heuristic value that results 
from a priori information or from run-time feedback. They define 
the properties that the ants of the colony should have such as a 
memory (to evaluate the current solution or to retrace the path 
backward), termination conditions and being able to move in its 
feasible neighborhood. The ants’ probabilistic decision rule 
depends on its memory, the problem’s constraints and also the 
ant-routing table (a local data structure with pheromone trails and 
heuristic values). There are two types of pheromone updates: 
online step-by-step update (updated by the ant when it moves 
through an arc) and online delayed update (updating the 
pheromone trails after finding a solution and retracing the path 
backwards). Additionally there are two other processes of 
updating pheromone trails: daemon actions and pheromone 
evaporation. Daemon actions are optional and might be used to 
perform actions that individual ants cannot do. Pheromone 
evaporation consists of decreasing the intensity of the pheromone 
trails over time in order to avoid convergence to sub-optimal areas 
and to explore new areas of the graph. Dorigo and Caro [1] 
applied this ACO meta-heuristic to two specific problems: the 
traveling salesman problem (TSP) and adaptive routing in 
communications networks. In order to solve the TSP problem they 
applied an Ant System (AS), which consists of a number m of ants 



positioned in parallel on m cities. When all ants have completed a 
tour (this happens synchronously because, during each iteration, 
each ant adds a new city to the path that is being constructed) they 
re-trace the tour backwards and increase the intensity of the 
pheromone trail using their memory, which is also used to avoid 
visiting the same city twice. In AS, pheromone evaporation occurs 
when all the ants have completed their tours and no daemon 
actions are performed. The amount of pheromone deposited is 
proportional to the quality of the produced solutions. The 
probability of choosing a certain connection depends on the 
heuristic value of that connection. Finally there are two 
parameters α and β that are used in the ant-routing table and that 
determine the importance given to distance and pheromone 
values. If α = 0, the closest cities are more likely to be selected 
and if on the contrary, β = 0, paths with higher pheromone values 
will be chosen, which may lead to the rapid emergence of a 
stagnation. The problem of routing in communications networks 
is building and using routing tables to direct data traffic and 
maximize network performance. The ant-routing tables are bi-
dimensional given that the node to which a data packet entering a 
generic node should be forwarded depends on the packet 
destination node. They developed the AntNet algorithm to solve 
this problem.  In this algorithm the heuristic value of an arc is a 
function of the length of the queue of the link connecting two 
neighboring nodes. The other aspects are similar to those of the 
previous algorithm. 

This formal description of the Ant Colony Optimization meta-
heuristic allowed for the development of several modifications of 
this algorithm in order to be applied to different classes of 
problems. 

2.1 Vehicle Routing Problem 
There have been several works and different approaches 
addressing the Vehicle Routing Problem (VRP), which can be 
defined as the  problem  of  minimizing  time  and costs of the 
distribution of goods performed by a fleet of vehicles, from a  
depot to a set of customers. 

Yu et al. [2] propose a strategy to update pheromone levels, called 
ant-weight strategy. In the ant-weight strategy, the quantity of the 
global pheromone increment of each route is related to the total 
length of the solution. On the other hand, local pheromone 
increment in each link is based on the contribution of that link to 
the solution. They also make use of the mutation operator which 
performs random customer exchanges. 

Bell and Mcmullen [3] suggest two modifications to the ACO in 
order to allow the search of the multiple routes of the VRP: use of 
local exchange and of a candidate list. The local exchange 
procedure uses the 2-opt heuristic (in which all possible pairwise 
exchanges of visited locations are tested) in order to improve 
individual routes. The other improvement strategy is the use of a 
candidate list for selecting the next location in a vehicle route. 
Each location is allocated a candidate list based on the distance to 
all the other elements in the location set. In terms of pheromones, 
they simulate natural evaporation through reducing the amount of 
pheromone on all visited arcs (local updating). Global updating 
consists on adding pheromone to all of the arcs included in the 
best route solution route. Negulescu et al [4] present a somewhat 
similar idea by introducing an Elitist Ant System (EAS) in which 
each ant that finds a better solution has the chance to deposit more 
pheromone. 

Donati et al. [5] address the Time Dependent Vehicle Routing 
Problem by suggesting new time dependent local search 
procedures (such as Customer relocation, Customer exchange or 
Branch exchange) and the use of two Ant colony systems (ACS): 
ACS-TIME – a colony that has the objective of minimizing the 
total length of the solution; ACS-VEI – a colony which attempts to 
find a feasible solution with a lower number of tours than the best 
solution found so far. They also claim that in order to attain a 
faster construction of the solution it is useful to introduce a set of 
neighbors for each customer given that in an optimized solution 
there will never be trips between distant locations. 

Gambardella et al. [6] makes use of two ant colonies: one colony 
minimizes the  number  of  vehicles  and  the  other minimizes  the  
traveled  distances.  The cooperation between colonies is executed 
by the exchange of information through pheromone updating. 
This approach makes the vehicle routing problem closer to the 
traditional traveling salesman problem. 

Zabala and Torres [7] propose the use of the Ant Colony System 
with a Local Search algorithm to solve the Vehicle Routing 
Problem with Capacity and Time Windows, in order to minimize 
the cost (traveled distance) of the delivery routes. In the 
beginning, ants are placed in the central depot and start moving to 
unvisited nodes by applying exploitation and exploration, without 
violating the capacity restriction and time windows. Global and 
local pheromone updates are performed along the tours. Choosing 
the next state is determined by a function that depends on 
pheromone levels, distance and also two random variables that 
determine the relative importance of pheromone vs. the distance 
and exploitation vs. exploration. To improve the solutions, a local 
search procedure is implemented using the CROSS-exchange 
operator (which interchanges consecutive customer segments 
between two different routes) after all the solutions were 
generated. The solutions that are within a percentage above the 
best solution found form part of the Local Search process. They 
also used the Variance Analysis (ANOVA) statistical test (which is 
used to study the relationship between a dependent variable and 
independent variables) in order to reach more reliable 
conclusions. In terms of parameters, they came to the conclusion 
that the best results are obtained when the pheromone level and 
the distance between nodes have the same of importance, there is 
a medium global pheromone evaporation level and a there is low 
local evaporation during the construction of the routes. Also, 
when finalizing the construction of the routes, an higher 
evaporation level should be applied in order to avoid being 
trapped in local optimums.  

These works are focused on a problem somewhat different from 
the one that we tackle in this paper but their solutions use 
interesting modifications to the ACO algorithm and allowed for a 
better understanding of the Ant Colony mechanisms and how 
important the tuning of parameters is in order to achieve a greater 
performance. 

2.2 Traffic Signal Timings 
The ACO algorithm has also been used to optimize traffic signal 
timings. Bullnheimer et al.[8] makes use of ACO to manage signal 
setting parameters like number of phases, cycle length or effective 
green times. The results achieved by He and Hou [9] show that 
ACA is a simple and feasible method for signal timing 
optimization problems. 



Once again, these papers focus on a different problem from the 
one that we will tackle but shows the wide range of usefulness of 
the ACO algorithm. 

2.3 Traffic Prediction 
Claes and Holvoet [10] used a combination of the ACO algorithm 
with link travel time predictions (based on current traffic 
situations, historic data and real-time information provided by 
vehicles) to find routes that reduce travel times.  Also they present 
a new parameter (heuristic importance) to balance heuristic and 
pheromone values. The introduced algorithm does not require 
global pheromone updates and assumes that pheromones from 
different vehicles do not interact. Instead, they only use local 
updates by exploration or primer ants. To create solutions each 
primer ant is sent out over each route before exploration ants and 
will locally increase the pheromone level of all edges. This 
pheromone increase will guide the exploration ants to the 
statistically optimal solution. 

Ando et al. [11] propose a traffic prediction method that employs 
a pheromone mechanism and in which each car is regarded as a 
social insect that deposits multi-semantics of pheromone on the 
basis of sensed traffic information. They use the idea of alarm 
pheromone: a leading bee informs the subsequent bees of any 
danger using alarm pheromone so that other bees can avoid it. 
They suggest the combination of three different pheromone 
flavors: a Basic Traffic Pheromone in which speed represents 
congestion rate; a Braking Pheromone in which the deposited 
amount depends on the number of times its brakes are applied; a 
Distance Pheromone that unlike the previous two is a pheromone 
of attraction that informs following vehicles about the possibility 
of a decrease in congestion. This pheromone flavor however 
assumes that vehicles are “equipped with a millimeter-wave 
radar”. As transition functions they make use of a common 
evaporation mechanism (pheromone levels decreases over time) 
and implemented a new mechanism to represent pheromone 
propagation which represents the characteristic of  pheromone 
trails spreading throughout the surrounding environment. The 
results of their experiments (which used real traffic data) confirm 
the applicability of their method to short-term traffic prediction. 
However, their implementations use an Intelligent Transportation 
Systems (ITS) infrastructure called the probe-car system, which 
only exists in Japan. 

Our aim is to create a cooperative system that could be used in 
real-time. Claes and Holvoet [10] assume access to historic data in 
order to make travel time predictions. Also, their proposed use of 
primer and exploration ants means that for each route, the path 
will be traversed twice. Finally, their system is not cooperative 
given that pheromones from different vehicles do not interact and 
consequently the other vehicles in the network do not benefit from 
the information brought back by that particular ant. Ando et al. 
[11] propose a cooperative system that makes short-term 
predictions of traffic. There are some similarities between their 
concept and ours but we do not intend to actually predict traffic. 
Traffic prediction is a very complex process given the instability 
of traffic: even a short-term prediction can be rendered useless if, 
per example, an accident occurs. So we decided that our focus 
was mainly dealing with real time information. 

2.4 Other approaches 
Another known problem is the Railroad Blocking Problem (RBP), 
that is addressed by Yue et al. [12], which consists in minimizing 

“the total operating costs of delivering the traffic on the railway 
network while satisfying the resource and capacity constraints at 
the stations and the priority constraints for shipments.” In this 
paper they apply the ACO algorithm in a similar fashion to how 
they would solve the TSP problem. 

Another application is to create routing algorithms for mobile ad-
hoc networks (MANET), which are a collection of mobile nodes 
that communicate over radio. Gunes et al. [13] propose an new 
ACO algorithm called Ant colony based Routing Algorithm (ARA) 
which consists of three phases: the route discovery phase (use of a 
forward ant and a backward ant to create new routes), the route 
maintenance phase (responsible for route improvement during 
communication) and the route failure handling phase (routing 
failures are very common in mobile ad-hoc networks). 

Another cooperative ACO approached is explored by Claes and 
Holvoet [14]. The ACO procedure allows the knowledge of 
previous found solutions to be embedded into the graph. Other 
ants then use this knowledge to guide them. This indirect means 
of communication and coordination is called stigmergy and is 
explored in that paper. The most desirable routes are those that 
lead to locations that are near their destination. To achieve this, 
locations are grouped based on the region they are in. However, 
maintaining the additional data needed for the region specific 
information presents an overhead compared to the original 
algorithm.  

Garro et al. [15] propose evolving some parameters of the ACO 
algorithm through a genetic algorithm (ACO-GA). They introduce 
a new transition rule that overcomes the limitation of knowing the 
distance between two cities (based on the fact that real ants 
choose a path solely based in the levels of pheromone). So, they 
use a GAS to evolve the parameters α, β and γ from the transition 
rule. In terms of the genetic algorithm they make use of a fitness 
function and a crossover operator. The fitness function is based on 
two kinds of ants (workers and explorers). A worker ant reaches 
its destination and is carrying food. The best ant worker is that 
one that has more food. An explorer ant does not possess food and 
is searching for its destination. The crossover operator randomly 
combines the α ,  β  and  γ  parameters of the best workers to 
generate new offspring. 

Robinson et al. [16] explores Pharaoh’s ant colony that comprises 
two types of trail pheromones: attractive and repellent. 
Experiments have previously shown that Pharaoh’s ants use both 
types of pheromone. Their results show that with low traffic flow, 
pheromone decay overwhelms pheromone deposition indicating 
that small colonies of Pharaoh’s ants cannot establish organized 
foraging trails. On the other hand, their model also predicts that 
above a certain threshold, increasing the ant flow will not increase 
foraging success. 

These papers offer some interesting concepts such as worker and 
explorer ants, forward and backward ants and the use of attractive 
and repellent pheromones. 

 

3. TOOLS 
In order to simulate the traffic system logic we needed a road 
traffic simulator. Chen and Cheng [17] analyzed a wide range of 
agent-based traffic simulations systems and divided them into five 
different categories:  



– agent-based traffic control and management system 
architecture and platforms;  

– agent-based systems for roadway transportation;  
– agent-based systems for air-traffic control and management;  
– agent-based systems for railway transportation;  
– multi-agent traffic modeling and simulation. 

We opted for the Simulation of Urban MObility (SUMO) [18] 
which is an open source, microscopic road traffic simulation 
package that offers the possibility to simulate how a given traffic 
demand moves through a given road network. It was analyzed by 
[8] and is described as being multi-modal, which means that there 
can be various types of transportation vehicles besides passenger 
car. It is also purely microscopic, meaning that every vehicle has 
its own route, and moves individually through the network. It is a 
space continuous, time discrete (the default duration of each time 
step is one second) and collision-free system. It also offers 
support for traffic lights implementation. In our system we used 
SUMO version 0.12.3. 

 

4. METHODOLOGIES 
In this paper, we approach this theme by using a Multi-agent 
System (MAS) to simulate the effect that the usage of the 
proposed algorithm would have on city transit.  

4.1 System Architecture 
Our system is divided into five main modules: 

– Agent: contains all the information and actions relative to each 
individual agent; 

– Constants: contains global constants that are used by the other 
modules; 

– Controller: the main class. It is responsible for parsing the 
network file, creating the network and the population, 
communicating with SUMO and saving the simulation results 
to a file; 

– Network: contains the relevant information of the network in 
question: the layout, the distances and time step occupancies. It 
is graph in which edges (i, j) connect vertices i and j. The 
edges represent existing roads and vertices describe existing 
junctions; 

– Population: serves as an intermediate between the Controller 
and the Agents and is responsible for creating the agents, 
parsing the route files and attributing routes to the agents and 
for communicating. 

 
Figure 1 - Communication Process 

4.2 Inverted ACO 
In order to more effectively spread vehicles throughout the 
network the idea to implement an Ant Colony Optimization (ACO) 
algorithm emerged. This well-known algorithm is used to find 
optimal paths in a graph: each ant lays down pheromone trails and 
other ants are likely to follow the trail (instead of travelling at 
random) reinforcing it. Over time, pheromone trails starts to 
evaporate, thus reducing its attractive force.  
 

4.2.1 Main Idea 
Unlike in the traditional ACO algorithm, our goal is not to find the 
shortest distance path to a destination. The goal is distributing the 
load of vehicle across the city grid, preventing congestion, while 
proposing paths to individual drivers that are shortest time paths. 
So our implementation reverses the ACO logic and will make 
pheromone trails repel incoming vehicles.  
Our approach is a combination of the Dijkstra and ACO 
algorithms in order to deal with the static (edge distances) and 
dynamic (car density) natures of a traffic network. The Dijkstra 
part allows us to satisfy the selfishness of the system’s users and 
the ACO part allows for a cooperative mechanism that benefits 
subsequent vehicles. 

This algorithm has the advantage of taking into account the speed 
at which the vehicles move through a certain edge. Given that, in 
each time step vehicles deposit pheromone in the current edge, if 
they traverse it fast they will deposit less pheromone. On the other 
hand, if there is congestion in that edge it will take much longer to 
traverse, greatly increasing the pheromone trail. The occupancy 
factor in itself is not a realistic indication of the existence of 
congestion given that an edge can have an occupancy of 50%, but 
if all the vehicles in it are moving at a high speed then there is 
little or no congestion. The inverted ACO combines occupancy 
and speed factors, giving a better portray of the real congestion 
status of the network. 

A problem might arise from this traffic dispersion: we cannot 
simply send the cars on longer paths in order to keep away the 
congestion of the roads. Drivers are selfish and want to reach their 
destinations in the shortest possible time and our system provides 
them with the information to do just that. The “payback” to 
having access to such data is leaving a pheromone trail that allows 
other drivers to accurately evaluate traffic conditions.  
 

4.2.2 Congestion calculation 
The SUMO simulator offers a way to monitor congestion levels by 
presenting occupancy percentages for each edge of a network. 



This data was used, prior to the implementation of the ACO 
algorithm, to create a Shortest Time algorithm that combined this 
occupancy information with each edge’s distance in order to 
calculate an optimal path based on the levels of congestion. This 
however was a simplistic way to approach the problem given that 
it offered no indication regarding the speed at which vehicles 
move. In the ACO algorithm this would be the equivalent to only 
depositing pheromone once per edge. The developed ACO 
algorithm overcomes this fault given that, in each time step 
vehicles deposit pheromone in the current edge and so, if they 
traverse it fast they will deposit less pheromone. On the other 
hand, if there is congestion in that edge it will take much longer to 
traverse, greatly increasing the pheromone trail. The occupancy 
factor in itself is not a realistic indication of the existence of 
congestion given that an edge can have an occupancy of 50% but 
if all the vehicles in it are moving at a high speed then there is 
little or no congestion. The inverted ACO combines occupancy 
and speed factors, giving a much more realistic portray of the real 
congestion status of the network. 
 

4.2.3 Initial Procedure 
As previously referred, our approach is a combination of the 
Dijkstra and ACO algorithms. In the initial stage the developed 
algorithm acts solely as the Dijkstra algorithm given there is no 
pheromone data in the network yet. The following implementation 
of the Dijkstra algorithm [19] was used: 

D	  =	  {}	   #	  dictionary	  of	  final	  distances	  
P	  =	  {}	   #	  dictionary	  of	  predecessors	  
Q	  =	  priorityDictionary()	  	  	  #	  est.dist.	  of	  non-‐final	  vert.	  
Q[startEdge]	  =	  0	  
	  
for	  v	  in	  Q:	  
	  	  	  	  D[v]	  =	  Q[v]	  
	  	  	  	  if	  v	  ==	  endEdge:	  
	  	  	  	  	  	  	  	  break	  
	  	  	  	  for	  w	  in	  self.__graph[v]:	  
	  	  	  	  	  	  	  	  vwValue	  =	  0	  	  	  	  	  
	  	  	  	  	  	  	  	  vwValue	  =	  D[v]	  +	  G[v][w]	  
	  	  	  	  	  	  	  	  if	  w	  in	  D:	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  vwValue	  <	  D[w]:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  raise	  ValueError,	  "Dijkstra:	  found	  better	  path	  
to	  already-‐final	  vertex"	  
	  	  	  	  	  	  	  	  	  	  	  	  elif	  w	  not	  in	  Q	  or	  vwValue	  <	  Q[w]:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  #found	  shorter	  alternative	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Q[w]	  =	  vwValue	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P[w]	  =	  v	  

Figure 2 – Dijkstra algorithm 

The formula that is used during the optimal path calculation is the 
following for each edge: 

𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡  (𝑖, 𝑗)     =   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (𝑖, 𝑗)   +   𝑒𝑑𝑔𝑒𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑠  (𝑖, 𝑗)  
However, although merely choosing a path based on edge 
distances, these first agents start depositing pheromone along their 
traversed route. As the agents begin to spread throughout the 
network, the system begins to form a clearer picture of the state of 
the network. Ideally, assuming that all vehicles in the network use 
this routing algorithm, the system would be able to offer a very 
realistic portrayal of congestion levels throughout the whole 
network. 

Each time step, all vehicles receive updated information about the 
current pheromone levels and adjust their routes accordingly. In 
order to improve efficiency, route re-calculations are only allowed 
when vehicles are approaching an intersection. Otherwise, while 
following a straight line, vehicles would re-calculate their route 

several times without any real benefit to them and largely 
increasing the simulations’ computational time. 
 

4.2.4 Pheromone Deposit and Evaporation 
Initially, only global pheromone evaporation was implemented. 
At each time step, the pheromone levels were decreased in every 
edge, according to the edge’s length, i.e., longer edges had greater 
evaporation rates. 

The obtained results were not satisfactory. This is due to the fact 
that this global evaporation does not take into account how many 
vehicles are in each edge. So, in a long traffic queue, pheromone 
levels will rise greatly and will remain high for a considerable 
amount of time. Consequently, in order to improve performance, a 
local evaporation that took into account the quantity of vehicles 
present in a given road was added to the algorithm. 

This local evaporation consists on each vehicle withdrawing 
pheromone after leaving a certain edge. This withdrawal 
corresponds to minimum amount that a vehicle would deposit if 
traveling that edge at full speed: 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚  𝑡𝑟𝑎𝑣𝑒𝑙  𝑡𝑖𝑚𝑒   =
𝑒𝑑𝑔𝑒!𝑠  𝑙𝑒𝑛𝑔𝑡ℎ

𝑒𝑑𝑔𝑒!𝑠  𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑎𝑙𝑙𝑜𝑤𝑒𝑑  𝑠𝑝𝑒𝑒𝑑  

This mechanism is more accurate and dynamic given that, if there 
is no congestion in a given edge, the vehicle will be able to go 
through it rapidly and will erase its presence after leaving the 
edge, therefore updating pheromones to a more realistic level. On 
the other hand, if there is already congestion and the vehicle is 
forced to slowly travel through that edge, the amount deposited 
will be far superior to the minimum amount deposit, leaving a trail 
of its presence there. This pheromone decrease encourages other 
ants to choose this edge, thus improving the exploitation factor of 
the search. 
In short, this is the pheromone procedure: 
if	  not	  willLeaveEdge(edgeId,	  agentId):	  
	  	  	  	  pheromones[edgeId]	  +=	  DEPOSIT_PHEROMONE	  	  
else:	  
	  	  	  	  pheromones[edgeId]	  -‐=	  	  

	  	  	  	  	  getMinimumTravelTime(edgeId)*DEPOSIT_PHEROMONE 
 

4.2.5 Pheromone Variation History 
Another important factor in evaluating current congestion is 
understanding the pheromone variation trend: if the pheromone 
level in one edge decreased in the last N time steps, then it is 
likely that the number of cars in that edge has diminished and 
consequently so has the congestion; on the other hand, an edge 
might currently have a low pheromone level although the 
tendency of the last N time steps might indicate an increasing 
demand for that edge. 

Basically, this pheromone variation history mechanism adds a 
short history of pheromone levels in each edge, in order to better 
understand the variation of the traffic volume and to more 
efficiently evaluate traffic congestion. 

The formula that is used during the optimal path calculation is 
altered in the following manner: 
 
 
 
 



𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛   𝑖, 𝑗
=   𝑒𝑑𝑔𝑒𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑠   𝑖, 𝑗 +   𝐶
∗ 𝑒𝑑𝑔𝑒𝑃ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛   𝑖, 𝑗  
where  C  is  the  relative  importance  of  the  variation  

 

𝑖𝑓  𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛   𝑖, 𝑗 <   0:      
            𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛   𝑖, 𝑗 =   0 
(negative  congestion  values  would  imply  that  the  physical  distance  was    
shorter  than  what  it  actually  is)   
  

𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡  (𝑖, 𝑗)     =   𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (𝑖, 𝑗)   +   𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛   𝑖, 𝑗   

 

5. Experimentation 
In this section we present and analyze the experimental results. 
The objective of these experiments is to evaluate the performance 
of the proposed algorithms.  

The testing process used Shortest Time (ST) and inverted ACO 
(IACO) algorithms and consisted in the simulation of two sets of 
routes, for 5.000 and 10.000 drivers. These routes were executed 
in two different networks: Lattice and Radial and Ring. These 
networks are illustrated in the following figures: 

 

Figure 3 – Radial and Ring (left) and Lattice networks (right) 

For each amount of drivers, 5.000 and 10.000, we generated 5 
drivers per step/second. Also, for each of those amounts, we 
varied the percentage of active users of our system, testing with 
the following percentages: 0%, 25% and 75%. Each of these 
variations was simulated 30 times in order to enable averaging of 
the results and consequently the production of reliable data. 
 

 

5.1 Experimental Results 
Firstly we will compare the Shortest Time (ST) and inverted ACO 
(IACO) algorithms on the Radial and Ring and Lattice maps. 

Figures 4 to 7 refer to experiments with 5.000 vehicles. The green 
line represents the behavior of vehicles when using the standard 
algorithm implemented in SUMO, providing a baseline for 
comparison. 
 
In Figures 4 and 5 we can observe that, in Radial and Ring map, 
the IACO algorithm requires a higher percentage of active users 
than the ST algorithm. This can be explained by the lack of 
pheromone information that occurs with low user percentages. 
However, as the user percentage increases it achieves better 
results than the ST algorithm, always managing to maintain a 
significantly smaller route length. On the other hand, with a 100% 
user percentage, IACO's trip duration efficiency is similar to the 
one obtained by using the ST algorithm, although travelled 
distance is significantly smaller. The experiments conducted using 
the Lattice map indicate a similar behavior. Like previously, the 

IACO algorithm requires relatively high usage percentages to 
attain average trip durations that are competitive with the ST 
algorithm. In terms of traveled distance IACO clearly outperforms 
ST. 

 

 
Figure 4 –Average trip duration with 5000 vehicles: Radial and Ring map 

 
Figure 5 –Average trip duration with 5000 vehicles: Lattice map 

 

 

Figure 6 – Average traveled distance with 5000 vehicles: Radial and Ring map 
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Figure 7 – Average traveled distance with 5000 vehicles: Lattice map 

 
Figures 8 to 11 refer to experiments with a higher traffic load 
(10.000 vehicles): 
 

 
Figure 8 – Average trip duration with 10.000 vehicles: Radial and Ring map 

 

Figure 9 – Average trip duration with 10.000 vehicles: Lattice map 

 
 

 
Figure 10 – Average traveled distance with 10.000 vehicles: Radial and Ring 

map 

 
 

Figure 11 – Average traveled distance with 10.000 vehicles: Lattice map 

 

As it can be observed in Figures 8 to 11, with a higher traffic load 
IACO appears to improve in the Radial and Ring map, achieving a 
better performance in terms of duration and route length, even for 
a 25% user percentage. This might be due to the fact that, even 
with a low user percentage, it detects heavy traffic in the center of 
the map and manages to avoid it. Additionally, the higher number 
of vehicles contributes to the presence of more pheromone 
information throughout the map.   Once again, with very high user 
percentages, IACO's performance seems to stagnate in terms of 
trip duration. We can also observe, regarding the Lattice map, that 
with the increase in total number of vehicles the IACO algorithm 
has a slower start and only manages to surpass the ST algorithm 
when the user percentage reaches a high level. This may be due to 
the fact that, unlike in the Radial and Ring map, there is no central 
point in the network and so pheromone information is more 
disperse. 
 

6. DISCUSSION 
The IACO algorithm is based on a collaborative approach and 
tries to disperse traffic in real-time in order to enhance a network's 
traffic throughput. It relies heavily on the information provided by 
the users, i.e., the pheromone that they deposit.  
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Given its nature, with low user percentages, the information that is 
available about the state of the network in the IACO algorithm is 
somewhat fuzzy and incomplete. Therefore, its performance is 
worse than that of the ST algorithm. However, even with low user 
percentage it is still advantageous given that it offers a 
considerable reduction in trip length. This benefit should be 
appealing enough in order to convince people to adhere to the 
IACO system. 

With the rise of the user percentage, the data regarding the 
network's state becomes more accurate and complete, leading to a 
better performance than its ST counterpart both in terms of 
average duration and length.  
 

7. CONCLUSIONS 
In this paper, we have presented an algorithm that pro-actively 
tries to distributed possible routes for real-time city demand 
without the need to know in advance the origin and destination of 
drivers. This way the privacy concern is eliminated. In our 
approach, based on the usage of an inverted Ant Colony 
Optimization algorithm, each simulated vehicle leaves a 
pheromone trail that permits other drivers to accurately evaluate 
traffic conditions, consequently allowing a better vehicle 
distribution, optimizing the global efficiency of the road network. 
Also, we developed a mechanism that, by keeping a short history 
of pheromone levels in each edge, allows us to better understand 
the variation of the traffic volume and to more efficiently evaluate 
traffic congestion. 

To validate our approach we conducted several experiments using 
radial and Ring and Lattice traffic networks. The experimental 
results show that the IACO algorithm outperforms the standard 
SUMO routing algorithm vehicles as well as the ST algorithm in 
terms of average traveled distance. For moderate to high usage 
percentages the IACO algorithm also outperforms both in terms of 
trip duration.  

In conclusion, this work shows that collaborative algorithms can 
greatly enhance a network's traffic throughput when compared to 
simple individual routing algorithms with general traffic 
information.  
In terms of future work we plan to conduct experiments using 
real-life traffic networks and information. These experiments will 
focus on three main aspects. 

– To study the initial viability and appeal of the system, more 
attention will be given to the behavior with low percentages of 
users: in order to be attractive and to convince people to adhere 
to it, the system should offer advantages even with low usage 
percentage. 

– The adoption of the IACO algorithm by a percentage of users 
has an impact on the overall traffic flow; Thus, since it leads to 
lower congestion, it is fair to expect benefits even for drivers 
that do not adhere to the system. Measuring the impact of the 
algorithms on other drivers is also considered a priority. 

– The data gathered in these experiments appears to indicate that 
IACO may lead to significant reduction of fuel consumption 
and CO2 emissions, which means that this improvement in 
network efficiency is eco-friendly and allows drivers to save 
money; it is necessary to confirm it experimentally. 
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