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ABSTRACT

This paper proposes a macroscopic model to describe the operation of intelligent traffic flow

where intelligent vehicles are driving closer to each other than manual vehicles and operating

in a form of many platoons each of which contains several vehicles. The model is developed

from a car-following model which allows us to obtain well tractable macroscopic equations for

such platoon based traffic operation. The stability diagrams are constructed from the

developed model based on the linear stability method for a certain model parameter set. It is

found analytically that intelligent vehicles enhance the stabilization of traffic flow with respect

to a small perturbation. Numerical simulation is carried out to support our analytical findings.

We have argued that in parallel to microscopic models for intelligent traffic flow, the newly

developed macroscopic model will provide a complete insight into the dynamics of intelligent

traffic flow.
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INTRODUCTION

Traffic congestion is one of the main societal and environmental problems in many
developed countries. A lot of research has been conducted to seek solutions to the traffic
related problems with the ultimate goal of increasing the road capacity. In general, most of
the potential solutions are applying either relevant traffic control strategies or information and
communication technologies (ICT). This article deals with the potential applications of ICT
and investigates their effects on traffic flow dynamics. ICT are now in the early stages of
transforming transportation systems by integrating sensors (remote sensing and positioning),
control units (traffic signals, message signs) and automatic technologies with microchips to
enable them to communicate with each other through wireless technologies. It is expected
that in the coming 5 to 10 years ICT will considerably progress worldwide so that intelligent
vehicles, in which the driving tasks are shifted from the driver to the vehicle through
autonomous vehicle-to-vehicle and vehicle-to-infrastructure communication, will make up a
significant share of the traffic flow. Therefore, it is essential to evaluate the effects of
intelligent vehicles on traffic flow dynamics well in advance before they are widely
implemented and designed so that the negative effects can be minimised.

To date, there have been impressive advances in modelling the dynamics of intelligent traffic
systems in the US (Bose and Ioannou, 2003, Davis, 2007), in Europe (Marsden et al., 2001,
van Arem and Tampere, 2003, van Arem et al., 2007, Togeren et al., 2007, Kesting et al.,
2008) and in Asia (Kikuki et al., 2003), most existing work relies on a microscopic modelling
approach which describes traffic flow at a high level of detail such as the movement of
individual vehicles . In this paper, we focus on a macroscopic modelling approach depicting
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traffic flow at a low level of detail via aggregate traffic variables such as flow, mean speed
and density. In contrast to microscopic models, macroscopic models are preferred for real-
time prediction and control applications due to their fast computational demand and less
calibration effort (Zhang and Wang, 2012). To the best of our knowledge, there are very few
advances in incorporating the intelligent driving behaviour in macroscopic models. Ngoduy
(2012,2013) have developed macroscopic models taking into account the contribution of the
penetration of intelligent vehicles (e.g. adaptive cruise control or cooperative adaptive cruise
control vehicles). Based on such models, linear and nonlinear instabilities of traffic flow have
been analyzed to show the impact of the penetration of intelligent vehicles on traffic
dynamics.

In general, either microscopic or macroscopic models show that intelligent vehicles will
stabilize traffic flow with respect to both small and large perturbation such as sudden
deceleration or lane changes and lead to significantly increased capacity and reduced travel
time. However, in intelligent traffic flow systems, the important functionality of ICT is to
arrange vehicles in closely spaced groups, which are called platoons. In such traffic systems,
the intra-platoon spacing (that is the vehicle spacing within a platoon) is kept smaller and the
inter-platoon spacing (that is the spacing between platoons) is kept larger than in manual
traffic systems. Consequently, the current macroscopic traffic models are still insufficient as
they do not adequately capture the platoon based operation in intelligent traffic systems. In
principle, the platoon based operation will model traffic flow to contain many platoons moving
together (instead of many individual vehicles moving together as in manual traffic flow). The
behavior of vehicles inside the platoon (hereafter the platooning) is determined by that of the
platoon leader (hereafter the platooner) whereas the behavior of the (following) platooner is
determined by the leading platoon. To contribute to the state of the art in traffic flow theory,
this paper will propose a new platoon based model to describe more realistically the
dynamics of intelligent traffic flow. To this end, the contribution of this paper is threefold:

1. The generalized force model (GFM) of Helbing and Tilch (1998) is extended to
capture the platoon based microscopic driving behaviour.

2. The proposed platoon based GFM is used to formulate a new macroscopic model
using a gas-kinetic approach.

3. The analytical properties of the model are derived and numerical simulations are
carried out to show the impact of intelligent vehicles on traffic dynamics.

GENERALIZED FORCE MODEL AND GAS-KINETIC EQUATION

Platoon based generalized force model

We have chosen the GFM because it is well suited for the gas-kinetic model as the
deceleration (or braking) time is explicitly taken into account and we can derive a
macroscopic model which is well tractable and is consistent with the general form of other
macroscopic models. According to Helbing and Tilch (1998), the amount and direction of a
behavioral change such as the acceleration/deceleration is given by a sum of generalized
forces reflecting the different motivations which a driver feels at the same time. Since these
forces do not fulfill Newtons laws: action = reaction, they are called generalized forces.
Helbing and Tilch (1998) argued that the success of this approach in describing traffic
dynamics is based on the fact that driver reactions to typical traffic situations are more or less
automatic and determined by the optimal behavioral strategy. In the model of Helbing and
Tilch (1998), the dynamics of a vehicle n with velocity vn(t) at place xn(t) and time instant t is
given by the equation of motion:
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In equation (1), n and v0 denote the acceleration time and the desired speed, respectively, of

vehicle n. The acceleration term presents the motivation of vehicle n to reach its desired
speed v0 while the repulsive interaction term describes the motivation of that vehicle to keep
a safe distance from the leader n−1. The repulsive interaction term is specified as:
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where:
 s0 denotes the speed dependent safe-distance, defined as s0 = d+Tvn. Here, T is the

safe time headway measured by the time the follower is needed to stop completely to
avoid a collision with a stopped vehicle in front, while d is the safe distance between
the follower’s front and the leader’s rear when these two vehicles stop completely.

 sn = xn−1 −xn is the distance headway between vehicle n and its direct leader n−1.
 vn−1 is the speed of the direct leader.
 H(.) denotes a Heaviside function, a dimensionless quantity.

 R is the distance measured by a range of the braking interaction (m). n

 Ve(sn) is the headway-dependent equilibrium speed.

 is the braking (deceleration) time. Typically, n n  since deceleration capabilities of

vehicles are greater than acceleration capabilities.

Note that if we neglect the contribution of the finite deceleration time 
n , the model of Bando

et al. (1995) or OV-type model is obtained. There are some important properties of the
repulsive interaction force as described in literature (Helbing & Tilch, 1998). First, it will
guarantee early enough and sufficient braking in cases of large relative speed (vn-vn−1).
Second, this force increases with growing relative speed (vn-vn−1), but will only be effective, if
the speed of the follower is larger than that of the leader (i.e. H(vn-vn−1) = 1). Third, it will

increase with decreasing distance headway sn, but vanish for large one (i.e. ns ).

Now let us consider the operations of intelligent vehicles, which are basically moving in a
form of many platoons. The dynamics of intelligent traffic flow are described by the
interactions between platooners while the platooning will be controlled by their platooner. If
we consider each platoon an entity moving together and the interaction between each
platoon also be described by the car-following rule, from equation (1) the dynamics of the
considered platooner with speed vp at place xp(t) and time instant t can be described as:

 0
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where p depicts the platoon index and , 1p pf is determined similarly to equation (2):
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Here:

 0
ps denotes the speed dependent safe-distance between platoons, defined as 0

ps =

dp+Tpvp. Here, Tp is the time headway between platoons and dp is the safe distance
when the platoons stop completely.

 sp = xp − xp−1 is the distance headway between platooner p and its leading platooner
p−1

 vp−1 is the speed of the leading platooner.
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 Ve(sp) is the headway-dependent equilibrium speed.
Let m denote the number of vehicles within a platoon. In principle, m is dependent on traffic
situations. In contrast to the platooners, platooning are moving much closer together we can
model the dynamic length of the platoon as:

   0 01  p pL m d T v (5)

Where Lp is the length of the platoon p, T0 and d0 denote the time headway and safe distance
at complete stops of the platooning. Practically, T0 < Tp since the platooning drive very close
to each other.

The distance (or space) headway between platoons now defined as sp(xp,t) = s(x+Lp, t)
where s is the distance headway between the considered platooner and its direct leading
vehicle (i.e. the last vehicle of the leading platoon).

Platoon based gas-kinetic equation

In this section, we apply the gas-kinetic equation to vehicular traffic presented in Helbing and
Treiber (1998). This equation will serve as the basis for the subsequent derivation of the
platoon based macroscopic model in the next section. As we will show in the next section,
the derivation method uses some exact integration calculations to end up with the

macroscopic variables. Let  , ,p px v t denotes the phase and space density (PSD)

distribution of platooner p driving with speed vp ( ,   p p p pv v v dv ) at location x

(  , x x x dx ) and time instant t, where dvp and dx are small deviation of speed and

location of the platooner p, respectively. Note we drop the index p from time to time for the
sake of simplicity since the gas-kinetic equation holds for any platooner with respect to its
leading platooner. It is also worth mentioning that, in a traffic problem, a phase-space
quantity represents all possible states of traffic flow in time and location. For a homogeneous
freeway (e.g. without on-and off-ramps), the platoon based gas-kinetic model reads:
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p
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 (6)

In equation (6), the convection term describes the changes of the PSD due to the movement
of vehicles along the road while the interaction term depicts the changes of the PSD due to
the acceleration to the desired speed as well as the deceleration.

Let us substitute equations (3)-(4) into the gas-kinetic equation (6) to obtain:
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(7)

In equation (7) the deceleration is determined by the interaction between the following
platooner and the leading platoon, speed of which is defined by the leading platooner. This
method is different from the other derivations such as the gas-kinetic models of Treiber et al.
(1999) because in those models one usually assumes an instantaneous braking to the speed
of the slower vehicle in front, if overtaking is not possible. This approximation of the
deceleration behavior is justified only if the time scale of the deceleration is significantly
smaller than that of the acceleration and therefore is neglected. It leads to the Boltzmann-like
braking interaction term as in current gas-kinetic based models. From equation (7), we will
generate a macroscopic model in which the platoon based driving behaviour has been
incorporated. This is the subject of the next section.
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PLATOON BASED MACROSCOPIC EQUATIONS

The derivation method in this section is a so-called method of moments. In principle, the
method of moments has been applied widely to obtain macroscopic traffic models from gas-
kinetic theory in literature (Treiber et al., 1999, Helbing et al., 2001, Hoogendoorn et al.,
2002, Ngoduy, 2008, Ngoduy et al. 2006, 2009). In this paper, we just briefly show the
procedure to obtain a macroscopic model using such method. By definition, the macroscopic
traffic variables are determined as below:

 Platoon density rp(x, t) describing the number of vehicle platoons per unit road length
[x,x+dx] at time t. Let gv(x, vp, t) denote the probability density function of speed vp,

the phase-space density is defined by:      , , , , ,p p p v px v t r x t g x v t . If we take the

integral of this relation over the speed vp we will have

     , , , , , p p p p v p px v t dv r x t g x v t dv . By definition,  , , 1 v p pg x v t dv , hence:

   , , , p p p pr x t x v t dv (8)

 Mean speed Vp(x,t). The platoon mean speed Vp(x,t) is defined as:

   , ( , ) , ,  p p p v p pV x t v x t v g x v t dv , hence:

 1
, , p p p p p

p

V x v t v dv
r

 (9)

 Platoon mean speed variance  , p x t . The platoon mean speed variance  , p x t

is defined as:    
2

,  p p px t v V , hence:

  
21

, ,  p p p p p p

p

x v t v V dv
r

 (10)

where . denotes the so-called mean operator, defined as below. For any function  y 

where  is a variable:

      y y d


     (11)

with    being the distribution function of  .

Let us multiply both sides of equation (7) with  , | ,k
p w p pv G w s x t (k = 0, 1, 2,…), where we

define 1p pw v , then integrate them over all possible values of vp,wp and sp. Here

 , | ,w p pG w s x t denotes the probability that, given a platooner with speed vp at location x and

time instant t, the leading platooner drives with a speed wp at a headway distance sp. Let us

apply the factorization approximation      , | , , , , , w p p w p p s pG w s x t g w x s t g s x t which

means that distributions of the speed of the leading platooner wp and the corresponding
distance headway sp are statistically independent, and independent of the speed vp of the
following platooner. Accordingly, the aggregated left hand side of equation (7) becomes:

   
1

, , , ,



 
    
  
 

  
k k

k p p p p p w p p s p p pA dv v dw ds g w x s t g s x t r v
t t
 (12)



Platoon based macroscopic intelligent traffic model
Ngoduy

13
th

WCTR, July 15-18, 2013 – Rio de Janeiro, Brazil
6

   1 1

1

, , , , 



 
    
  
 

  
k k

k p p p p p w p p s p p pB dv v dw ds g w x s t g s x t r v
x x

 (13)

and the aggregated right hand side of equation (7) reads:
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In the ensuing paper let us assume that at the aggregate level, the model parameters are the
same for either platooner or platooning. Therefore we could drop the platoon index p for all
model parameters.To set k = 0 and k = 1, respectively, we obtain the dynamic equations for
the platoon density (i.e. the conservation law for the number of platoons per road length unit):

 
0


 

 

pp
r Vr

t x
(15)

and for the flow as detailed below. It is worth noting that pr mr , where r denotes traffic

density (i.e. number of vehicles per road length unit). Furthermore, the mean speed of the
platooning is as the same as that of the platooner, so we drop the platoon index for the mean
speed.

As the conservation law must also hold for individual vehicles, i.e.:

 
0


 

 

rVr

t x
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a straightforward calculation from equations (15) and (16) leads to:

0
 

 
 

m m
V

t x
(17)

To close the model, we need an assumption for the dynamics of the speed variance, which
has been justified to follow an empirical function of density as in literature (Treiber et al.,
1999, Treiber and Kesting, 2013). Consequently, the main difficulty is to determine function
C1, which results in the dynamic equation of the flow. That is:
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From equation (18) we set 1 1 1 a bC C C where:
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It is straightforward to show that:

   1 , , 
pa

p s p e p

r
C ds g s x t V s V


(19)

By definition:  , , 1 s p pg s x t ds and    , ,  p s p p ph s g s x t ds h s . Let s denote the

mean distance gap between two consecutive vehicles. A plausible assumption that the traffic
density r(x,t) is a constant between x and x+ s leads to: 1/s r . By using equation (5) and
first order Taylor expansion we obtain the mean distance gap between platoon p and its
leading platoon p-1:
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Applying equation (20) to the gap-dependent equilibrium speed gives:
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Now let us expand 0 ( )p
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By definition  0  p
p ps V d T V we have:
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Let us apply the first Taylor expansion to the exponential term:
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Details of the exact calculations of the integrals I1 and I2 are described in Ngoduy and Wilson
(2013). We only show in this paper the main results:
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determined at advanced location  px s , ,







 

V V
z  

2 /2

,
2




ze

N z


and

   


  
z

z N y dy . By substituting equation (26) into equation (24) we obtain:

     
 

01/ / 0 0
1 2

1
1

     
    

 
pr s V Rpb

r m d T VT r
C e z

R Rr x
(27)

By substituting equations (22) and (27) into equation (18) we have:
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Further linearization of the error function   z leads to:
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which is then substituted into equation (28) to obtain:
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By substituting equations (16) and (17) into equation (30) we obtain:

 

           01/ /0 0 0 0

2

, ,

1 11
1

2




 

   
  

  

      
     

  




p

e

r s V Re

V r V V VV V m
V

t x m x

m r d T V dV r m d T VV VdP T r
e

r dr dr R r x



  

(31)

where P = P(r) = rΘ denotes traffic pressure term (Treiber et al., 1999; Treiber & Kesting,

2013). For the sake of simplicity, let us assume that  m m r , equation (31) turns to:
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where
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e
dr dr m dr dr R r  

This model equation is consistent with the general equation for a second order model
presented in Helbing and Johansson (2009) and Treiber and Kesting (2013). It is worth
noticing that, in our model, the finite deceleration time and the multi-anticipative behaviour
both contribute to the modified traffic pressure terms and the density-and-speed dependent

equilibrium speed. Since the safe speed-dependent distance (i.e.  0
ps V ) and the relative

speeds (through the Normal error function terms) are all considered in the model, our model
will have non-local interaction properties.

MODEL PROPERTIES

This section investigates analytically the property of the introduced model to reflect the
effects of multi-anticipations on traffic flow stability. In order to do so, we derive stability
conditions based on the linear method for the introduced (macroscopic) model. The linear
method refers to linear Taylor approximations, which are used throughout the analysis. The
consequence of these approximations is that the conditions that are stable according to this
analysis might actually still show non-linear instability. However, in general the linear analysis
gives sound insights in the general behavior of the model in the presence of reaction time.

To follow the derivation in Helbing and Johansson (2009) and Treiber and Kesting (2013), we
rewrite equation (32) in the following form:
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To perform the linear stability analysis let us consider small perturbations around the

homogeneous and stationary solutions [re,Ve] (where Ve = Ve(re), denoted by ,r V  :

,   e er r r V V V  (34)

Let these perturbations be determined as corresponding cosine functions with frequency 
and wave number  as shown below:

0 0,  t i x t i xr r e V V e       (35)

where i denotes the imaginary unit, 0r and 0V are constants.

By substituting equations (34) and(35) into equations (16) and (33), performing the linear
analysis as detailed in Helbing and Johansson (2009) and Treiber and Kesting (2013) we
obtain the following linear stability condition:

2

0


 
   

 


e e e

e

dV dP dV A
r

dr dr dr V
(36)

where
  01/ /1 1

2

 

 

 
 

 




p er s V Re eVA T

e
V V R  

Let us graphically illustrate the derived linear stability conditions using the space headway
dependent equilibrium speed formula in Helbing and Johansson (2009):
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where V0 = 115km/h, sc = 40m, d0 = 4m. Other

parameters are T0 = 0.7sec, 3 sec, R = 75m, 0.75 sec, dp=20m, Tp=1.5sec, m = 4

(i.e. a constant for the analytical study). Note by definition:      1/ e e eV r V r V s so

equation (36) can easily be re-written in the following form:
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Figure 1. Stability diagram
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Figure 1 shows the natural stability curves for the given parameters of the proposed model
using the linear stability condition (37), where the stability function is measured by the left
hand side of equation (37). Accordingly, traffic is linearly unstable for space headway range
inside the stability curves and becomes linearly stable (either free-flow stable or congested
stable) for space headway range outside the stability curves. This figure illustrates that
platoon based operation of intelligent vehicles leads to stabilization of traffic flow.

We are currently working on the simulation of the model to investigate the effect of the
platoon based operation on the capacity at bottlenecks and on the formation and dissipation
of stop-and-go traffic jams on a freeway with an on-ramp. Such extensive simulation results
will be presented at the conference.

CONCLUSIONS

Although much effort has been undertaken to develop microscopic models for intelligent
traffic flow dynamics, there has been few advances in developing a model which can capture
realistically the characteristics of such intelligent traffic flow. More specifically, in intelligent
traffic flow, vehicles tend to move in a platoon in which the vehicles inside the platoon are
moving rather close together and follow the driving behavior of the platoon leader. Therefore,
intelligent traffic flow is considered to contain many platoons moving together, rather than
many individual vehicles moving together. This paper has presented a new approach to
develop a platoon based macroscopic model to describe more realistically such driving
behavior. Particularly, our model has been developed from a gas-kinetic model in which the
platoon based driving behaviour is explicitly described through an extended (microscopic)
generalized force model. The developed model is non-local in its derivation process (i.e.
thank to the speed-dependent safe distance and Normal error function terms) and has a
structure similar to a generalized macroscopic model (Helbing and Johansson, 2009, Treiber
and Kesting, 2013) with modified pressure terms accounting for the finite deceleration time
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