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ABSTRACT 

A theoretical definition of a hotspot is any location that has a higher expected number of 
accidents than other similar locations as a result of local risk factors present at the location. 
This study presents an alternative approach to research regarding hot spot definition and 
identification based on a probabilistic model that defines the dependent variable as an 
indicator of a discrete choice. A binary choice model was used considering a binary 
dependent variable that differentiates a hot spot (category 1) from a safe (category 0) site set 
by the number of accidents per kilometer. To define these two categories, it is necessary to 
use a strategy that selects a hot spot as accurately as possible. Based on a threshold 
strategy, various hypotheses were analyzed to obtain the most appropriate value to balance 
sensitivity and specificity criteria (epidemiological criteria). To apply this approach, risk 
factors including traffic volume, the number of minor intersections per kilometer, the road 
function classification and land use from an urban segment data set collected over a five-
year period from Porto, Portugal, were used. The probabilities were estimated by the binary 
choice model, and a performance evaluation was then applied. In addition, considering the 
probabilistic nature of this approach, it is also possible to define four classes to classify a site 
in terms of safety using the uncertainty in a site being a hot spot, setting for each class a 
range of probability values. Furthermore, a comparative analysis was considered to test the 
performance of the qualitative response (QR) method relative to two commonly applied 
methods - accident frequency (AF) and empirical Bayes (EB). Considering the probabilistic 
nature of this approach, two probability threshold values were determined based on the 
“correct proportion” of sensitivity and specificity. These two values, along with the 0.5 
probability value that the model defines to separate a hot spot from a non-hot spot, were 
used to define four classes. Using these classes, priorities and types of engineering 
intervention can be determined and thus, site interventions can be efficiently managed. In 
addition, the QR approach was compared with the AF and EB, against four robust and 
informative quantitative evaluation criteria tests. These tests showed that the QR method 
performs better than the two other methods. In this paper, a strategy to more accurately 
classify hot spots from a set of sites is proposed using four classes that may define priorities 
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and types of engineering intervention, allowing for the efficient management of site 
intervention. Above all, this analysis proves that the application of a probabilistic model is an 
alternative approach to hot spot research.  
 
 
Keywords: Qualitative response model; Binary choice model; Hot spot identification; 
Countermeasures; Performance evaluation 

INTRODUCTION 

Accident prediction models (APM) have been extensively applied in transportation safety 
analysis. As reported in (Lord, 2002), they are extremely useful tools for the safety analysis 
of transportation facilities because they have a wide range of applications, such as in finding 
the proper relationship between accidents and covariates, determining the long-term average 
number of accidents regarding transportation entities and the computation of the expected 
number of accidents for sites that have yet to be built or upgraded. These issues may be 
applied in the study of hot spot identification, countermeasures, prediction and safety 
evaluation. Different statistical methods have been used to develop APM by taking into 
account the non-negative integer nature of crash-frequency data, among which the preferred 
one is application of count-data regression methods. A common technique used for APM is 
the generalized linear model (GLM) procedure with the assumption of a negative binomial 
(NB) error distribution (Sawalha and Sayed, 2001, Lord and Persaud, 2004, Lord, Manar and 
Vizioli, 2005, Anastasopoulos and Mannering, 2009). However, methodological approaches 
have evolved over the years to address superior statistical fits and/or predictive capabilities. 
Recently, a review of the statistical analysis and its methodological alternatives has been 
published (Lord and Mannering, 2010). In all of these statistical techniques, the predicted 
outcome is the number of accidents per time period for a transportation entity (segment or 
intersection), i.e., a quantitative response.  
 
Qualitative response models have been focused on the statistical analysis of accident-injury 
severities, where also a variety of methodological techniques have been applied. The 
discrete and the ordinal nature of the injury-severity data, generally represented by discrete 
categories such as fatal injury, incapacitating injury, non-incapacitating, possible injury, and 
property damage only are proper represented by a qualitative response model.  
 
The most common techniques applied to analyze accident-injury severity were the binary, 
multinomial logit, nested logit and ordered probit and logit formulation (Carson and 
Mannering, 2001, Kockelman and Kweon, 2002, Abdel-Aty, 2003, Eluru, Bhat and Hensher, 
2008, Wang and Abdel-Aty, 2008, Savolainen, Mannering, Lord and Quddus, 2011). These 
models can be grouped in two response mechanisms: the ordered response (ordered probit 
and ordered logit) and unordered response (binary, multinomial and nested). The ordered 
response mechanism has the advantage of being parsimonious in structure because it 
imposes the restriction that the regression parameters are the same for different severity 
levels. Hence, the adjacent severity levels are correlated. On the other hand, the unordered 
response mechanism is based on a utility-maximization principle hypothesis and thus the 
severity levels are not presumed to correspond to the successive partition of a uni-dimension 
latent variable (Bhat and Pulugurta, 1997). 
 
In the context of accident frequency, the discrete choice models were seldom used. 
However, recently, a novel approach has been described in (Ferreira and Couto, 2011) about 
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the use of the ordered probit model to assess safety at the planning level. This approach 
based on probabilistic results has the advantage to allow to performing a risk analysis. 
 
As may be concluded from the above briefly review, the qualitative response models have 
been extensively applied in determining accident-injury severity, leaving other possible 
applications open. One of them is hot spot (also referred to as black spots, hazard sites, 
high-risk sites, accident-prone sites, sites with promise or priority investigation locations) 
identification. Thus, this paper aims to provide an analysis of the potential of the quantitative 
approach as an alternative to commonly used methodologies in identifying hot spots and to 
determine if the novel approach improves those methodologies. 
 
A hot spot can be theoretically defined as any location that has a higher number of accidents 
than other similar locations as a result of local risk factors (Elvik, 2008b, Montella, 2010). 
Several methods for identifying hot spots have been used; the most commonly used method 
is the ranking of accident frequency and the ranking of accident rate (Montella, 2010). In fact, 
in Europe, a recent EU directive (2008/969/EC in (2008)) on road infrastructure safety 
management suggests that for the identification of road sections with a high concentration of 
accidents, the number of fatal accidents that have occurred in previous years (at least 3 
years) per unit of segment length as related to traffic volume and, in the case of 
intersections, the number of accidents per location should be used as a minimum.  Despite 
these practical examples, considering the methods most commonly used by several 
researchers, it is generally assumed that the empirical Bayes technique is the best approach 
because it is more capable of accounting for random fluctuations in the record number of 
accidents (regression to the mean phenomenon) (Cheng and Washington, 2008, Elvik, 
2008a). Other methods such as classical confidence intervals and the accident reduction 
potential are seldom used in practice, though they are the focus of several researchers’ 
attention.  
 
Assuming that it is difficult to quantitatively define the precision of estimates that are 
determined using different techniques, recent research has been done to develop new 
criteria for evaluating methods of identifying hot spots (Cheng and Washington, 2008, 
Montella, 2010, Cafiso and Silvestro, 2011, Lan and Persaud, 2011). Also, the use of some 
critical issues in the identification of hot spots, such as the traffic volume, segment length and 
accident observation period, reported in (Cafiso and Silvestro, 2011), can emphasize the 
quality of the results.  
 
Based on the foregoing discussion, it is difficult to set a clear definition of a hot spot because 
a simple observation of an unusually high number of accidents does not necessarily mean 
that there is a safety problem on a particular section of road; it may be a random “up” 
fluctuation in accident count during the observation period (Elvik, 2008a, Montella, 2010). 
This, this difficulty arises in distinguishing sites that are truly high risk (true positives) from 
those that may be false positives as a result of random “up” fluctuations. As pointed out by 
Montella in (Montella, 2010), ‘errors in hot spot identification may produce large numbers of 
false negatives and large numbers of false positives’, where in the former, truly hazardous 
sites are mistakenly designated as safe and, in the latter, truly safe sites are mistakenly 
identified as hazardous. These errors result in the inefficient use of resources to perform 
safety improvements and reduce the global effectiveness of the safety management process. 
 
Studies have focused on the assessment of true and false positives and of true and false 
negatives to analyze the performance of different hot spot identification methods (Geedipally 
and Lord, 2010, Cafiso and Silvestro, 2011, Lan and Persaud, 2011). Several criteria have 
been used to compare the hot spot identification methods using criteria such as sensitivity 
and specificity (epidemiological criteria), which are based on the classification of the type of 
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errors generated by correct or incorrectly hot spot detection (Elvik, 2008a, Geedipally and 
Lord, 2010).  Although several studies have focused on the analysis of the model 
performance based on the error types, it is interesting to note that, to the author’s knowledge, 
there is less attention focused on the study of hot spot selection on the basis of a threshold 
or according to budget constraints. The most common was considered the top percentage 
range between 1% and 10%, with the highest accident frequency, accident rate or other 
identification criterion.  
 
In this context, we propose an alternative approach based on a qualitative response model 
that embraces, from a different perspective, the analysis that to date has been referenced in 
many studies. This approach is based on categorical modeling that defines the dependent 
variable as an indicator of a discrete choice, which in the case of the hot spot approach may 
be classified into two categories: hot spot and non-hot spot, i.e., the binary (0/1) dependent 
variable is set to differentiate a safe site from a hot spot site. To define these two categories, 
it is necessary to use a strategy that selects a hot spot as accurately as possible. Based on a 
threshold strategy, various hypotheses were analyzed to obtain the most appropriate value to 
balance sensitivity and specificity criteria (epidemiological criteria).  
 
In this approach, a general framework of probability models is used to link the outcome to a 
set of factors. Because we used two categories for the dependent variable, binary choice 
models were used. The road attributes considered were: traffic volume, number of minor 
intersections per kilometer, road function classification and land use. The binary choice 
model also provided an analysis of the risk factor effects on a hot spot relative to those on a 
non-hot spot site. Finally, based on those risk factors, the model estimated the probability 
associated with a site, and, in turn, a category was set. With respect to the probability of a 
hot spot or a non-hot spot occurring, four classes of countermeasure engineering 
interventions are proposed. These four classes represent a tool to be used in the efficient 
management of engineering interventions. 
 
We believe that the qualitative approach, as a simple alternative, may overcome the most 
commonly used methodology. The main characteristics of this approach are (1) the outcome 
of a binary model includes a matrix of predictions that compares actual values with predicted 
values that indicate false and true positives and predict success or failure; and (2) the 
outcome is a probability that determines the likelihood of a site being a hot spot, and as such, 
a degree of uncertainty is associated with the selection of a hot spot, allowing (3) a quick and 
efficient analysis of a site situation in terms of safety and, protection against misdirecting 
engineering efforts toward undeserving sites. In the latter, different types of countermeasure 
treatment approaches can be defined. Moreover, this qualitative approach provides an 
individual analysis of the exogenous variable effects on hot spot sites relative to those on 
non-hot spot sites. Furthermore, all of these characteristics of the binary model may allow for 
control over other issues that have not been fully addressed, such as the definition of a hot 
spot and random fluctuation problems. 
 
Thus, to carry out these goals, a binary choice model was developed and applied to urban 
road segments using Porto (Portugal and Goldner) data covering a 5-year period. These 
data were used to estimate the parameters and marginal effects as well as for performance 
evaluation. A strategy was developed to determine whether or not an urban segment can be 
classified as a hot spot. Then, the same data were used to validate this strategy with respect 
to the studied sites. Additionally, four classes of countermeasure treatments were defined.  
 
The remainder of this paper is organized as follows: methodology, data description, results 
and summary and conclusions. 
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METHODOLOGY 

This section describes the dependent variable, the exogenous variables and the regression 
approach used for hot spot identification. Also, the performance evaluation criteria and 
possible countermeasure treatments of sites based on the likelihood of a site being a hot 
spot or a non-hot spot are described. 

Dependent Variable 

A binary dependent variable was defined to differentiate a hot spot site from a safe site 
(category 0 for a non-hot spot and category 1 for a hot spot site). Because the accident 
frequency along with some road attributes such as segment length and traffic flows are 
usually available in the database for hot spot identification, categories were defined using 
this information. To reflect the accident risk (accident frequency/exposure) per year, the 
segment length was used as the exposure measure to normalize the frequency of accidents. 
Different studies have used this variable as an offset, considering the nearly linear 
relationship between segment length and accident frequency (Montella, 2010, Cafiso and 
Silvestro, 2011). To verify this observation in the Porto segments, the relationship between 
this variable and accident frequency, using the segment length as a covariate, was analyzed. 
Applying a count-data model with a negative binomial error distribution to the Porto data, an 
elasticity of 0.9 was determined, which indicates that a 1% increase in segment length 
implies a 0.9% increase in accident frequency (Ferreira, 2010). Although this elasticity 
indicates a slight deviation from a linear relationship, it is not significantly nonlinear. On the 
contrary, as referred by Lord (Lord, 2002), traffic flow may not be a suitable measure of 
exposure. In fact, for traffic flow (Annual Average Daily Traffic or AADT) it was found an 
elasticity value of 0.5, which confirms the non-linear relationship between AADT and accident 
frequency. Moreover, the traffic flow is an important covariate to characterize road sections in 
hot spot analysis because countermeasures can be related to changing traffic flows or 
movements. Therefore, the accident frequency per segment length was selected to define 
the categories of the binary choice model.  
 
On the basis of the threshold strategy for listing hot spots, a criterion to identify the 
appropriate threshold value above which a site is set as a hot spot (category 1) was defined.  

Exogenous Variable 

To characterize a segment, various covariates were included in the regression model. Traffic 
flow is considered the most determinant variable for the occurrence of accidents and as such 
was usually used as the only variable in the model (Fridstrom, Ifver, Ingebrigtsen, Kulmala 
and Thomsen, 1995, Lord, 2000, Lord, 2006). In addition to traffic flow, the number of minor 
intersections per length was included by taking into account the fact that the presence of an 
intersection with a minor road, such as access roads without traffic data, can have a 
significant effect on a segment with respect to accident risk (Mountain, Fawaz and Jarrett, 
1996).  
 
The geometric and functional features of the segment were typified using the road function 
classification. This is a broader manner of characterizing segments using single information 
that is easy to obtain. Although the municipal master plan defines four road classes, namely, 
arterial roads, principal distributor roads, local distributor roads and access roads, only 
principal distributor roads and local distributor roads were used because arterial roads have 
characteristics similar to those of a highway and a lack of traffic flow data for access roads 
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was encountered. Furthermore, to embrace the street environment of a segment that can 
describe, for example, the presence of truck vehicles or pedestrian, land use was also 
included in this study. Five different types of land use based on the municipal master plan 
were taken into account: Land Use 1 (LU1) – high density of buildings; Land Use 2 (LU2) – 
low density of buildings; Land Use 3 (LU3) – industrial area; Land Use 4 (LU4) – community 
building area (educational buildings and sports grounds); Land Use 5 (LU5) – historic center 
area. Although the latter’s covariates are difficult to analyze from an engineering treatment 
perspective, it may indicate the need of changing road features and/or the street environment 
from a broader perspective. Also, it has the advantage of heeding the differences in risk 
factor effects between a hot spot located in an industrial area and a hot spot located in a 
central area, for example. 
 

The regression approach 

The qualitative response approach is based on categorical modeling that defines the 
dependent variable as an indicator of a discrete choice, i.e., the dependent variables are 
merely a coding for some qualitative outcome (Greene, 2008). In this approach, a general 
framework of probability models is used to link the outcome to a set of factors (Greene, 
2008): 
 

Prob(event j occurs) = Prob(Y=j)=F[effects, parameters]                 (1) 
 
where the “event” is an individual’s choice among a set of alternatives. 
 
Considering a binary response to differentiate a safe site (Y=0) from a hot spot site (Y=1) 
and the covariates described later, which are gathered in a vector x to define the decision 
between both categories: 

 
           

1| ,
0| 1 ,  

        (2) 
 
The set of parameters β reflects the impact of changes in x on the probability. A suitable 
model for F(x,β) is assumed, usually considering a normal or logistic distribution. The 
distributions are similar in that it is difficult to justify the choice of one distribution or another 
on theoretical grounds (Greene, 2008). In this paper, the logistic distribution was chosen 
because it produced slightly better outcomes: 
 

1| 1  
            (3)                         

             
The function Λ(.) is a commonly used notation for the logistic cumulative distribution function.  
 
It should be noted that the parameters of the model are not necessarily the marginal effects; 
therefore, to compute them the following expression should be used: 
 

|
1  

       (4) 
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These values will vary with the values of x. Hence, the estimated model interpretation should 
be calculated using the means of the covariates.  It should be noted that it is not appropriate 
to use Eq. (4) to compute the marginal effects of dummy (binary variable that takes the value 
0 or 1) variables to apply the effect of a change in a dummy variable. The appropriate 
marginal effect of a binary independent variable, represented by d, would be: 

 
  1 , 1 1 , 0                 (5) 

 
where  denotes the means of all the other variables in the model.  
 
From the latent regression – y*=xb+e, the unobserved y* variable is determined (where ε is 
assumed to have mean zero and a standard logistic variance π2/3). In other words, we do not 
observe the predicted number of accidents; we only determine whether it is a hot spot or safe 
site. Therefore, our observation is: 
 

1    0
0    0 

            (6) 

Evaluation criteria 

As was mentioned previously, errors in hot spot identification may produce large numbers of 
false positives and false negatives. The former are related to sites that are detected as hot 
spots but are non-hot spots and the latter are those that are hot spots but are detected as 
non-hot spots. The number or percentage of sites that are correctly classified, and the false 
positives and negatives can be represented by a matrix, as in the study by Geedipally and 
Lord (Geedipally and Lord, 2010). The values predicted by the binary model versus the 
actual values provide a similar analysis of the type of errors described above; therefore, the 
same performance evaluation criteria, such as those described in (Elvik, 2008a, Geedipally 
and Lord, 2010, Lan and Persaud, 2011), were applied. 
 
To demonstrate the performance of the binary model, a matrix with the numbers and 
percentages of the predicted versus actual observations will be shown. The epidemiological 
criteria are also presented to evaluate the diagnostic performance of this approach. These 
criteria are: 
 

   
     

 
   

     

 
Assuming that the relationships between the dependent variable and covariates are correctly 
estimated by the model, the results related to the probabilities will be interpreted from a 
countermeasures treatment perspective based on the probabilities associated to each one, 
i.e., on the uncertainty in hot spot identification. The idea is to assume that we are in the 
presence of a “true” hot spot for a high value of probability of Prob(Y=1|x), and on the 
contrary, a “true” non-hot spot will be assumed for a high value of probability Prob(Y=0|x). By 
exclusion, uncertain hot spots and non-hot spots comprise in a critical intermediate range.  
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DATA DESCRIPTION 

A binary response model was developed using accident data collected from 376 Porto 
segments. The data were obtained from the official Portuguese Police Security database, 
covering all local (accidents resulting in injury and accidents resulting in property damage 
only) police-recorded accidents for the years 2001 to 2005. The data consist of 5634 police-
recorded accidents; of these, 1182 were personal injury accidents and 4452 were property-
damage-only accidents. All accidents were related to their specific location by applying a 
geographic information system (GIS) tool including information on segment length, number of 
intersections, road function classification and land use. The AADT was estimated by the 
Porto “SATURN” traffic model and data provided by permanent counting stations located 
throughout the principal city zones belonging to the Urban Traffic Center because traffic flow 
values were not available for all road networks. Table I provides relevant descriptive statistics 
for covariates and accident data. 
 
Table I - Statistical description of variables used in accident frequency models (5-year) 

Variable Min. Max. Average S.D. 

Accident frequency 0 27 3.00 3.95 
AADT 142 64068 15139 116734 
Segment length (in meters) 30 3343 329 36 
Number of minor intersections per kilometer 0.00 10.00 1.67 2.02 
High density of buildings (LU1) 0 1 0.55 0.50 
Low density of buildings (LU2) 0 1 0.22 0.42 
Industrial (LU3) 0 1 0.03 0.18 
Community buildings (LU4) 0 1 0.06 0.23 
Historic center (LU5) 0 1 0.14 0.35 
Local distributor roads 0 1 0.50 0.50 
Principal distributor roads 0 1 0.50 0.50 
 
It should be noted that land use and road function classification variables are dummy 
variables. Correlations among the variables presented in Table I were analyzed using a 
correlation matrix, allowing us to assume that the explanatory variables are not correlated 
(ρ≤0.3) (Ferreira, 2010). 
 
The accident frequency per segment length values for each observation were distributed by 
one of the two categories using a threshold value of 6.88 for the number of accidents per km 
achieved by the methodology described below. Hence, it was found that 51.9% of 
observations were related to category 0 and 48.1% to category 1.  

RESULTS 

This section is divided into three subsections. First, a strategy to determine a threshold 
number to list hot spots is described. Second, estimation results and performance evaluation 
are presented. Finally, a methodology is applied to the case of Porto data to define 
countermeasure treatments. 
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Threshold strategy for hot spot definition 

On the basis of the threshold strategy used to list hot spots, a criterion to identify the 
appropriate threshold value above which a site is classified as a hot spot (category 1) was 
defined using the epidemiological evaluation criteria, namely, the sensitivity and the 
specificity, whose definition was presented above. 
 
Taking into account the fact that the binary choice model set an observation as category 1 
when the probability was above 0.5 (Prob(Y=1|x)>0.5), this value was used to allocate the 
point where the sensitivity and specificity lines plotted against cut-off (P*) probability may 
cross each other. The idea was to balance the values of those criteria, ensuring roughly the 
same number of false positives (Type I errors) and false negatives (Type II errors) at the 
same point that the model used to separate a hot spot from a non-hot spot. 
 
Under this constraint and for the case of Porto data, the percentile 52, corresponding to 6.88 
accidents per kilometer, was obtained. Thus, by setting the threshold above this value, the 
observation was considered a hot spot by being identified as belonging to category 1. Figure 
1 shows the sensitivity and specificity lines plotted against the cut-off (P*) probabilities 
estimated by the binary model. As can be seen, the cross point of the two lines roughly 
matches the probability value of 0.5, above which the observation is classified as belonging 
to category 1.  
 

Figure 1 – Sensitivity and specificity against cut-off (P*) probability 

 
Figure 1 shows that the range of probability values approximately between 0.25 and 0.75 
correspond to a category choice near the threshold value of either being category 1 or 0; 
therefore, this region is defined as a critical zone, where there is no certainty about the hot 
spot identification. A deep analysis of this critical zone must be performed using an approach 
we propose and describe later in this paper. 
 

Estimation results and performance evaluation 

The binary choice model (BM) was estimated for Porto database, and the marginal effects for 
each variable were computed as discussed above (see results shown in Table II). It should 

26.30 

ε 2.8

68.90 



Engineering Intervention management using a probabilistic methodology for hot spot 
identification 

(Ferreira, Sara; Couto, António)  

 
13th WCTR, July 15-18, 2013 – Rio de Janeiro, Brazil 

 
10 

be noted that the parameter estimates in the BM represent the effects of variables on 
category 1 relative to category 0. 
 
The parameter estimates are significant at a 95% confidence level, indicating a possible 
relationship between the covariates and the probability of the categories used in the BM 
occurring, with the exception of the local distributor road function classification and the land 
use classified as LU5. This latter observation indicates that there are no differences in the 
marginal effects between a local distributor road and a principal distributor road. Also, no 
differences were found between a site located in a historic center area and a site located in 
an area with a high density of buildings, at least within the categories used in this approach.  
 
Considering the marginal effects shown in Table II, it can be seen that when the AADT 
increases, there is an increase in the probability of a site being a hot spot (category = 1). 
Also, when the number of minor intersections per km increases, the probability of a site being 
a hot spot increases as well, although to a lesser extent. In the case of the land use 
variables, Table II shows that a site located in an industrial area has a higher probability of 
being a hot spot than in areas with a high density of buildings, as may be expected. 
Additionally, a site located in an area with a low density of buildings or community buildings 
is associated with a decrease in the probability of being a hot spot, with no major differences 
in the marginal effects between the dummy variables in question. 
 
Table I - Binary choice model results 

Parameter 
Prob[Y=1] Marginal 

effects Estimated 
value 

Standar
d error P[Z>z] 

Constant -5.580 0.619 0.0000 -1.391 
LnAADT 0.583 0.064 0.0000 0.145 
Minor intersections per km 0.047 0.010 0.0000 0.012 
Low density of buildings (LU2) -0.648 0.125 0.0000 -0.157 
Industrial (LU3) 0.695 0.285 0.0147 0.170 
Community buildings (LU4) -0.507 0.210 0.0159 -0.122 
Historic center (LU5) 0.221 0.146 0.1315 0.055 
Local distributor road -0.067 0.106 0.5246 -0.017 
Number of observations 1880 
Restricted log-likelihood -1301.738 
Log-likelihood function -1207.145 

 
Table III shows value predicted by the BM versus the actual values for the category 
classification. Out of 904 true hot spot observations, the BM detected 557 (30%). In other 
words, there were 344 type I errors (false positives) and 347 type II errors (false negatives). 
In total, there were 691 observations that were incorrectly classified by the BM. Table IV 
gives the percentage of the prediction successes including the sensitivity and specificity 
percentage values. As expected, because of the constraint (threshold criterion) mentioned 
above, those values are quite similar. Figure 2 plots Sensitivity(Prob/P*) against 1-
Specificity(Prob/P*) to provide a ‘fit measure’. This ‘fit measure’ is computed as the area 
under the ROC curve (Greene, 2007). A greater area implies a greater model fit. A model 
with no fit has an area of 0.5. As shown in Figure 2, the area has a value of 0.672. 
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Table II - Classification of the outcomesa 
 Predicted value 

Actual value 0 1 Total 

0 632(34%) 344(18%) 976(52%) 

1 347(19%) 557(30%) 904(48%) 

Total 979(52%) 901(48%) 1880(100%) 
a) Note that column or row total percentages may not sum to 100% because of rounding 

 
Table III - Successful BM predictions 

Prediction Success % 
Sensitivity 61.6% 
Specificity 64.8% 
Positive predicted value (predicted 1s that were 
actual 1s) 61.8% 

Negative predicted value (predicted 0s that 
were actual 0s) 64.6% 

Correct prediction = actual 1s and 0s correctly 
predicted 63.2% 

 

Figure 2 - Sensitivity(Prob/P*) against 1-Specificity(Prob/P*) 

Classification of countermeasure treatments based on uncertainty in hot spot 
identification  

This section focuses on the two values located in the middle of what is defined as a critical 
zone (Figure 1) and the classification of four different types of engineering interventions. The 
first step is to establish the two values. To do so, a comparison between the category 
classifications using the accident frequency per kilometer observed as well as the probability 
estimated by the BM (Prob(Y=1|x)>0.5) was performed. Assuming a “correct proportion” of 
sensitivity and specificity of 97.2% (100%-ε) (see Figure 1), the two probability values are 
obtained: 0.263 and 0.689 cut-off probability. 
 
Thus, for efficient hot spot management, we defined the classification of sites in terms of 
safety so that when the probability of a site being a hot spot is lower than 26.3%, we assume 
that the site is safe; therefore, no intervention is needed (Class A). When the probability 
estimated is between 26.3% and 50%, despite the fact that the site could be identified as 
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being safe, we cannot ensure that some prevention countermeasures are not required (Class 
B). When the probability estimated between 50% and 68.9%, the site is a prone hot spot, and 
engineering interventions of the low-cost-measure type should be implemented (Class C). 
When the estimated hot spot probability is higher than 68.9%, we can safely assume that the 
site is a hot spot (Class D), and a deep analysis based on engineering interventions should 
be performed.  
 
Through the probabilistic approach described above, a more efficient tool to manage the 
engineering site interventions can be provided by considering four classes of priority of 
intervention: Class D – high priority of intervention; Class A – no intervention; Class B – 
intervention with few resources; Class C – intervention with low-cost resources. Thus, for a 
high-priority intervention (Class D), given the covariates included in the BM, strong measures 
should be used, such as changing the traffic flow and/or movements, placing traffic signs in 
minor intersections, parking features changes, and diverting access to the adjacent buildings. 
Sites classified as Class C require traffic-calming measures with a low-cost investment. For 
Class B, weak interventions such as the implementation of traffic signs and street illumination 
may be considered to prevent unsafe situations.  
 
Finally, to validate the classification procedure described above, the procedure was applied 
to all 376 segments (assuming for each covariate value the average site value of the five-
year observations). To do so, the percentage error related to the site classifications Class A 
and Class D was analyzed and compared to the percentage error assumed to define the 
threshold values of the 4 classes – ε = 2.8%. Under this condition, 1.6% of sites were found 
not to be hot spots despite being classified as Class D. Also, 0.5% of Class A sites were 
incorrectly classified. Thus, it was confirmed that the percentage errors of Class A and Class 
D were less than the previous limit value of 2.8% set for ε.     

SUMMARY AND CONCLUSIONS 

Hot spot analysis, including identification methodologies, performance evaluation criteria and 
so on, has been extensively studied for a long time. However, some issues still merit 
attention, particularly the use of alternative methodologies that may improve the current 
ones. Thus, this paper presents an alternative approach based on a qualitative response 
model that, given those specific properties, may improve the currently used methodologies 
while being capable of providing useful tools for the efficient treatment of hot spots. 
 
This novel approach is based on a probabilistic model that defines the dependent variable as 
an indicator of a discrete choice used to, in this case, differentiate a hot spot from a non-hot 
spot considering a binary (0/1) dependent variable set by the number of accidents per 
kilometer. To define the two categories, it is necessary to use a strategy that selects a hot 
spot from a set of sites as accurately as possible. Based on a threshold strategy, various 
hypotheses were evaluated to obtain the most appropriate value toward more balanced 
values of sensitivity and specificity criteria (epidemiological criteria).  
 
In this approach, binary choice models were used to link the outcome to a set of factors. The 
factors considered were: traffic volume, number of minor intersections per kilometer, road 
function classification and land use. Based on these risk factors, the model estimates the 
probability of a site being a hot spot (Prob(Y=1|x)). To apply this approach, data gathered 
from Porto, Portugal, over a five-year period was used. A performance evaluation was 
applied based on the epidemiological criteria, and a matrix with the predicted values versus 
the actual values was provided.  
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Finally, considering the probabilistic nature of this approach, it was possible to define four 
classes of sites using the estimated probability. Two probability threshold values were 
determined assuming a value of 97.2% for the “correct proportion” of sensitivity and 
specificity. These two values, along with the 0.5 probability value that the model defines to 
separate a hot spot from a non-hot spot, were used to determine threshold values for four 
classes. Using these classes, priorities and types of engineering intervention can be 
determined and thus, site interventions can be efficiently managed. 
 
From the application briefly described above, various advantages can be pointed out related 
to the probabilistic approach that may improve the current hot spot identification and 
intervention process. First, the outcome is a probability that determines the likelihood of a 
site being a hot spot and, as such, allows for different engineering intervention measures, 
depending on the degree of uncertainty that is associated with the selection of a hot spot. 
Moreover, this qualitative approach provides a relative probabilistic analysis of the 
exogenous variable effects on hot spot sites. In fact, it is expected that a site in an industrial 
area is likely to be more hazardous than a site in a residential area. With a probabilistic 
model, the risk effects of various road attributes are differentiated between categories.  
 
Furthermore, the outcome of a binary model includes a matrix of predictions that compares 
the actual values with the predicted values thus indicating the percentage of false and true 
positive and prediction success and failure. Also, in this paper, a strategy to more accurately 
classify hot spots from a set of sites is proposed using threshold values.  
 
Above all, this analysis proves that the application of a probabilistic model is an alternative 
approach to hot spot research. Nevertheless, further applications to other data are required 
to fully assess the utility of this approach.  
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