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ABSTRACT 

Traffic assignment models have been well studied over the years and new methods of data 

sharing have been evolved. As a result, there has been a great interest in developing 

stochastic and mixed strategy models. Still, the equilibrium conditions in most traffic 

assignment models are based on pure strategies. In the mixed strategy approach, each user 

chooses a probability distribution over his or her pure strategies (where a pure strategy 

defines a path). The mixed strategy approach relaxes the assumption of homogeneity 

among network users. Accordingly, a Mixed-Strategy User-Equilibrium model for general 

networks was developed. However, the mixed strategy path-choices models proposed so 

far, assumed static conditions. Therefore, this paper introduces a new model in which 

network users employ mixed strategies under dynamic conditions. The paper investigates 

the existence and uniqueness conditions for the solution of the dynamic mixed strategy user 

equilibrium problem. Model application is illustrated for simple network examples.  
 

Keywords: Dynamic Traffic Assignment; User Equilibrium; Path-Choices; Decision 

Modeling; Mixed Strategies  

INTRODUCTION  

The problem of predicting flow patterns in transportation networks, also known as the Traffic 

Assignment (TA) problem, plays a major role in the transportation engineering area 

(Kacharoo and Ozbay, 1999). The network flow pattern is affected by three types of 

properties: Physical properties of the network (topology and links' performance functions); 

Demand (the number of network users between each pair of origin-destination nodes in the 

network); and decisions of the network's users, manifested through their path choices.  

This paper focuses on the following problem: given the physical properties of the network 

and the demand, and given that the travelers through the network act in a selfish manner, 

find a network's flow pattern varying over time, dynamically.  
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Traditionally, the TA problem was modeled by static assignment models (User Equilibrium 

models), which are descriptive methods for predicting network flows and travel costs under 

the assumption of non-cooperative users. These models were formulated to be consistent 

with Wardrop's (1952) first principle, which is based on two main assumptions. The first 

assumption is that all travelers have perfect information. The second one is that the 

networks' demand is fixed, the users path-choices are fixed and determined before entering 

the network. These two assumptions may not be adequate to describe real-life situations. 

Therefore, the UE model was extended through three types of models and their 

combinations: stochastic (probabilistic) models, mixed strategy models and dynamic models. 

The stochastic models and the mixed strategy models relax the first assumption, and the 

dynamic models relax the second assumption.  

Stochastic User-Equilibrium (SUE) Models  

Stochastic user-equilibrium (SUE) models are well studied in the literature (Daganzo and 

Sheffi, 1977). The core of these models is the discrete route-choice models, according to 

which stochasticity results from variability between users' cost perception of networks. 

Mathematically, each user's perception is represented by an error term, which is a random 

variable that is distributed over the population of users. SUE models assume that the mean 

of the error term is zero, implying that on average, there is no difference between users. 

Moreover, the predicted network flows in SUE models are sensitive to the assumed 

distribution of the error term.  

Mixed Strategy Path-Choice Models  

A different probabilistic approach that also aims to describe users' variability is the mixed-

strategies framework, was proposed by Koutsoupias and Papadimitriou (1999).The mixed 

strategy path-choice models approach stems from both the mixed-strategy approach of 

classic game theory and contemporary approaches of algorithmic game theory. According 

to this framework, users have (nearly) perfect information about the network links' travel 

times. This approach motivates them to choose a distribution over his or her pure path-

choices strategies, as explained next.  

Mixed Strategy Path-Choice Motivation  

The main criticism against mixed strategies is that idea that users determine their actions, or 

in our case their traveling paths, on the outcome of a lottery, is against our intuition 

[Aumann, 1987] [Radner et al., 1982] [Rubinstein, 1991]. A rational analyst will be reluctant 

to believe that traveling decisions are made at random, and will prefer any other explanation 

that may point a reason for the users’ choices.  

However, according to Rubinstein (1991), mixed strategies, similarly to the error term in 

discrete choice models, can be interpreted as a "plan of action" which depends on the user's 

individual considerations that are not specified in the model. As a result, the users' behaviour 

seems to be random, although it is actually deterministic, similarly to the users' under SUE 

assumptions.  
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According to Rubinstein's interpretation to mixed strategies, a given user is not “flipping a 

coin” before each time he leaves his house to determine his traveling path. Instead, he is 

choosing deterministically a traveling path according to his own considerations, preferences, 

and biases. These decisions over a period of time may be seemed random, since each time 

a different choice can be made according to the user's private information at that given time. 

Observing these decisions over time enables us to measure their frequency, or in other 

words to assign each path-choice a probability. These probabilities are in fact the user's 

mixed strategies.  

Rubinstein (1991) offers another interpretation to mixed strategies in non-cooperative 

recurring games for using them to explain variability among players. According to this 

interpretation, each player, or in our case - each network user, represent a large population 

of users. The users in each occurrence of the game are drawn randomly from these 

populations. Therefore, mixed strategies can be viewed as a distribution of pure 

(deterministic) choices in the population. Thus, reflecting inherit variability among the users' 

population.  

Motivated by these interpretations, the foundation of any mixed strategy path-choice model 

is presented - the users' travel time function (the equivalent to "disutility" function in the 

game theory field).  

Estimated Travel Time Function  

Koutsoupias and Papadimitriou (1999) analyzed a simple case of single O-D network with 

parallel links, of which the congestion-dependent travelling times are linear (also known as 

KP model). The KP model is based on choosing the strategy that minimized the theoretical 

expected travel time of each link e,          . This model, which was based on two parallel 

links was later extended and studied mainly with respect to problems that rise in the field of 

computer sciences and electrical engineering (see [Czumaj et al, 2002]). Therefore, most of 

these papers are focused on algorithmic aspects of the problem (i.e., the complexity of 

computing Nash equilibria and computing bounds on worst-case Nash equilibrium) [Gofer, 

2008].  

Another approach was proposed by Orda et al. (1993) for their splitting models. They 

calculate the links' travel times as an estimation of the expected flow on each link e, 

         . Note that when the latency function is not linear,                    . 

Since the           expression proposed within the KP model is hard to compute in large 

scale networks, Gofer (2008) inferred that the average user in the network doesn't choose 

his path according to it. Therefore, based on Orda et al. (1993) estimation of the expected 

flow, the mixed strategy approach to the static traffic assignment problem was 

implemented. Within this framework, it was shown that using mixed strategy is the user best 

decision-making mechanism facing of the effect of other users' path-choices; i.e., choosing 

random travel paths distribution that minimizes his or her expected travel time is beneficial 

to the network user. Thus, instead of basing the path-choices on a criterion of perceived 

minimal path cost or most appealing path (as in the stochastic approach), in the mixed-

strategy models, each network user determines his or her mixed strategy according to the 

principle of expected minimal travel time.  
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The Mixed Strategy User Equilibrium  

Similarly to the UE and SUE approaches, it is assumed that because of the non-

cooperative behavior of the users and owing to congestion effects, network flows will 

converge to an operating point, at which no user will benefit from changing his mixed 

strategy unilaterally. For static networks, this is the mixed strategy user equilibrium (MSUE).  

Note that the MSUE is not equivalent to the UE (Rosenthal, 1973). The relation between 

these two equilibria is based on the fact that Nash equilibrium converges to Wardrop 

equilibrium when the number of the identical users sharing the same utility functions 

becomes large (Haurie and Marcotte, 1985).  

 

Objectives  

We believe that the new approach of combining game theory principle (such as Nash 

equilibrium) into traffic assignment problem by using mixed strategies path choice can be 

beneficial for transportation sciences and transportation engineering. This paper will discuss 

the application of mixed strategies in this context. Since mixed strategies models proposed 

so far were developed only under static conditions, this paper introduces new model in 

which network users employ mixed strategies under dynamic conditions.  

This paper suggests a new approach for predicting traffic patterns: the Dynamic Mixed 

Strategy User Equilibrium (DMSUE). This model is based on realistic assumptions about the 

users: acting selfishly, aware of the network topology and links performance functions, but 

do not have a perfect knowledge of other users' path-choices. Each user has only an 

estimation of the number of people travelling in the network. This estimation leads the user 

to choose his path using mixed strategy in order to maximize his or her utility (i.e., minimizes 

his or her expected travel time).  

This paper extends previous works which assumed static conditions. The suggested model 

uses a dynamic point of view, in order to investigate the changes of the flow distribution, in 

the sense of the users’ path-choices pattern, over time.  

The rest of the paper consists of five parts. The first part presents preliminary assumptions. 

The second part defines and formulates the dynamic mixed strategy model. The third part 

formulates the Dynamic Mixed Strategy User Equilibrium (DMSUE) model and proves the 

existence of a solution. The fourth path discusses the properties of DMSUE path-choices 

and presents two illustrative examples. The last part of the paper presents a summary and 

discussion of the results.  

PRELIMINARY ASSUMPTIONS  

In this section, the foundations of non-cooperative transportation networks' assumptions and 

notations are laid. First, a discussion on network structure representation is presented. Note 

that the DMSUE assumptions are divided into four types, based on the network aspects they 

correspond to:  

 Network structure's assumption - refers to the differences between paths in the 

network;  
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 Network flows' assumption - refers to the time in which the users enter the network;  

 Network flow-dependence latency assumptions - refers to the properties of the 

networks' link performance functions;  

 Mixed strategy path-choice mechanism assumptions - refer to the time in which the 

network users made their decisions, and the information these choices are based on.  

These assumptions are presented in next sections, discussing each of the aspects above. 

Next, network flows and flow-dependent travel times are discussed.  

Network Structure  

Consider a directed network G = (V, E), where V is the set of nodes, and E is the set of links 

(edges). Denote the set of origin nodes by S  V; the set of destination nodes by D V; and 

the set of origin-destination (O-D) pairs by OD = {{s, d}: s S, d D}. Each (O-D) pair {s, d} is 

connected is by a set of paths, denoted by Psd. The collection of all paths in the path-set is 

defined as   ⋃    
  . We assume that the network's paths differ from one another in at 

least one link. Also, the users' paths assumed to be without loops.  

Network Flows  

Within the dynamic framework, we divide the continuous time into times intervals, of one 

time unit each. Every time interval is denoted by △t and defined as △t = (t , t+1), where  

[0, T]. We assume that in the beginning of each time interval  , there are N users who enter 

the network. We divide the users who enter the network also by their sources and 

destinations. For each user i N , his source and destination are denoted as si and di 

respectively.  

In addition, we denote the flow on path p at time interval  by fp, . Thus, the flow on link e on 

time interval  is defined as:  
     ∑                                                                  (1) 

Where     is an indicator variable that equals 1 if link e belongs to path p, otherwise, it 

equals 0.  

Link Performance Functions  

The travel time on link e E is defined as a function le : R R and denoted by e. It is 

dependent on the flow (congestion) on e, such that e = le(fe). Similarly, p denotes travel 

time on path P, and the flow-dependent travel time function of path p P is denoted by lP(fp). 

p is the sum of travel times on all the links that comprise this path:  

      ∑           
  

                                                  (2) 

Numerous studies [Davidson, 1966], [Fare et al.,1982], [Smeed, 1986], [Wardrop, 1968], 

[USDOT,1986], and [Wilson, 1991] have shown that the relationship between traffic speed 

and traffic volume possess the following mathematical characteristics.  

Assumption 1 The travel time function le(fe) is assumed to be: Non-negative; Continuous; 

Strictly increasing with respect to the link flow; Convex; The travel time on a link is only a 

function on the flow on that link. 



The Dynamic Mixed Strategy User Equilibrium Problem 
SCHIFF, Neta R.; MAHALEL, David; BEKHOR, Shlomo 

 

13
th
 WCTR, July 15-18, 2013 – Rio de Janeiro, Brazil 

 

DYNAMIC MIXED STRATEGY PATH-CHOICE MODEL  

In this section the dynamic mixed strategy path-choice model is formulated. First, mixed 

path-choices and network users' utilities (their expected travel times) are defined. Next, the 

estimated travel time is presented, and finally the best choice is discussed. Based on these 

formulations, the mixed strategy user (Nash) equilibrium is defined in the subsequent 

section.  

Mixed Strategy Path-Choices  

The DUE and DSUE approaches assume that network users choose one path from their 

origin to their destination and use it. This may hold under the assumption of perfect 

information in the DUE and under the assumptions of maximum utility in the DSUE model.  

However, when facing with incomplete information regarding the choices of other network 

users, as explained in the previous sections, it is reasonable to assume, that users choose 

their paths at random with some probability. The path-choice of the users is manifested in 

the choice of this probability, which is referred to as mixed strategy. This way, instead of 

basing their path-choices on a criterion of perceived minimal path cost or most appealing 

path, it is assumed that each network user determines his mixed strategy according to the 

principle of estimated minimal travel time. This way, each user's path- choice distribution 

minimizes his estimated travel time.  

Network Users Mixed Strategy Path-Choice Mechanism Assumptions  

As mentioned before, there are two main assumptions of the users mixed strategy path-

choice mechanism, refer to the time in which the network users made their decisions, and to 

the information these choices are based on.  

Assumption 2 Under the DMSUE framework, the users are assumed to choose their path-

choices when they enter the network, and do not change them during their travel. 

The dynamic aspect of the DMSUE is related to the variation of the users' path-choices over 

time, which happens due to the change in the demand.  

Assumption 3 According to the DMSUE, a user estimates his/her travel time, based on the 

information of the other users' path-choices, both from the previous time interval and from 

the current one, regardless the path-choice of users who enter the network at future time 

intervals. 

The above assumption is accurate for single-source networks, but not correct for multiple 

O-D pairs. However, assuming that in congestion hours there are many users, this means 

that additional users entering the network will choose a different path, because of the spread 

of the users on the network and consequently updated travel times. In the dynamic model 

literature, this is an approximation of the real-life scenario is (see [Han, 2007], [Han, 2006], 

[Tatomir et al., 2004], [Tatomir et al., 2006]).  

Nevertheless, in order to overcome this assumption, historical traffic data may be used to 

obtain a measure of the future congestion, as suggested in [Tatomir et al., 2009], [Ando et 

al.,2005] and [Weyns et al., 2007]. This approach is discussed later in this paper. The 

users' mixed strategy path-choices under the DMSUE framework is presented next.  
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Definition 1 A probability distribution     
       (    

             

     | 
    |

       
     | |

)is called a 

mixed strategy of user i N who enter the network at t from source si to destination di, where 

      denotes the set of all loopless paths from source si to destination di.     
       denotes 

the probability that traveler i who enter the network at t from si to di, uses path p P. Note 

that this paper considers only loopless paths, that is, paths that do not travel along a link or 

a node more than once.  

The probability that user i chooses a path which does not connect his OD pair {si, di} is 0, 

i.e.     
                 . Moreover,     

                  , and ∑     
      

         

               . 

In the same way, a mixed strategies of all other users entering the network from source s to 

destination d at t , (i.e, j [1, N ], such that j ≠ i) is denoted as      
   . 

Definition 2 The probability that random user who enter the network at t from source s to 

destination d choose a certain path p (denoted as   
    

), is defined as follows:  

  
    

 {
∑     

      
   

  
         

                               
                                       (3) 

According to the last definition, the users' probability of choosing a certain link e is 

expressed as follows.  

Definition 3 The probability that travelers who enter the network at t from source s to 

destination d to use a certain link e (denoted as   
    ), can be expressed by:  

  
     ∑        

    
                                                   (4) 

Definition 4 A probability distribution   
   (  

         
    

     
   |   |

) is called a mixed 

strategy profile of a user who travels from source s to destination d at t .   

A mixed strategy of all users who traveling the network at t from other sources or heading 

towards other destinations is denoted as   
   . 

Definition 5 Assume that the set of all origin-destination pairs is denoted as follows: O-D= 

{(s1, d1), ..., (sk, dk)}. Then, the vector of mixed strategy path- choices of all users who enter 

at  from every source to every destination in the network is defined as: 

   (  
    

     
    

). The vector  is also called a mixed strategy profile of the users 

entering at t .  

We use Q to denote the set of all possible mixed strategy profiles for users who enter at t , 

from every origin to every destination{s, d} OD.  

We use                to denote the space of all the possible mixed strategies 

profiles, for all the time intervals.  

Moreover, the users' travel times depend on the inflow in each link. Based on Orda (1993), 

we assume that each user who enters the network at t can estimate the expected inflow at t 

on each link, as defined next.  

   
      ∑ ∑          

      
       

  
                                     (5) 

Contrary to evaluating the expected link flow, estimating the expected travel time         |   

is much harder and it is also not intuitive to the average user, who has limited understanding 

of the theory of probability. As mentioned before, we assume that users will use a different 

measure for the links' travel times, that is,         |  , which is easier to compute and more 

intuitive.  
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Furthermore, in the dynamic case, the network flow includes both the number of users enter 

the network at t and the occupancy of the network. Therefore, the path-choices made by 

users who entering the network at t are based on the path-choices of the users that enter at 

previous intervals. Therefore, in order to formulate the DMSUE model, we define the 

"history" of each link as the number of users who entered link e and have not exited the link 

at the th time interval (denoted by   
 ). In other words, the "history" is the sum over the 

number of users who enter the network at each time interval’  , choose the link e, and still 

use it. Mathematically,   
  is defined as follows: 

  
  ∑    

             
   

   
                                          (6) 

Where T ( ) denotes the average travel time experienced by the users entering at time . 

Thus,        
    equals to 1 if the users who enter the network at time interval ’ still use link 

e at the th time interval, and 0 otherwise.  

Note that different users at the same time interval may choose different path- choices. 

Consequently, their expected travel time may be also different. Therefore, the users' 

average over their expected travel times is computed, for each arrival time tτ’ [0, T] (and 

denoted by T′). Since N′ users enter the network at t′, the average of the expected travel 

time of users who enter the network at this time is expressed as follows:  

    
∑    (   )   (   (   )  

    
 )   

   
 

∑    (   )   (   (   ) ∑    (    )         
    

    
     

)   

   
 (7) 

 

Where ′′ ′ [0, T].  

Equations (6) and (7) yield that the path-choices making is a recursive process. 

Furthermore, the "history" of the users who enter the network at t depends only on the path-

choices of the users who enter the network before t (i.e., only on the path-choices    

′,′  ).  

The "history" factor presented in expression (6) can be extended by taking future congestion 

under consideration based on traffic historical data, divided into the network's links and time 

intervals. In this paper we hereby consider the "history" only when path-choices are made 

before the current travel time, as in (6) and (7).  

The Estimated Travel Time Function  

So far, we formulated the occupancy of the network and the users' path-choice profiles. 

Having this formulation, we define the utility function, which under the TA problem is 

equivalent to the travel-time function. As explained above, we refer to an approximation of 

the travel-time function, based on Orda [Orda et al.,1993], for static assignment problem. We 

assume that each user can estimate the expected flow on each link, therefore, he (or she) 

can also estimate his (or her) travel time, by using the function defined as follows.  

Definition 6 The estimated travel-time function of user i [1, N ] who enter the network at 

the th interval is defined as U,i : Q R such that: 

             (    
          

       
     )  

∑     
      

   ∑   (    
  ∑          ∑  

   

         
       )                  (8) 

Where   
  and N are defined as in expression (6). Note that the definition above considers 

time-dependent flows, which are more general compared to Orda. Moreover, one can see 

that the utility is a sum over all possible paths, for each path, a sum over all the links belong 
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to it are considered. For each link, we consider its latency function depends on the users' 

path-choices, both from the previous intervals and from the current interval.  

Note that by adding the "History" expression   
  to the estimated travel time, the FIFO 

condition takes place in the DMSUE. In this way, for each link, the estimated travel time of 

users entering the network at  is longer than the "history", which is the estimated travel 

time left for the users who enters the network at previous time intervals to stay in the link.  

Proposition 1 Given path-choices mixed strategy  , the estimated travel time function 

    (    
          

       
     ),i [1, N], [0, T] is a convex function with respect to  .  

Proof  [0, T],i[1, N], the utility function     (    
          

       
     )  is a convex 

combination of convex functions le(.), according to the assumptions above. Therefore, all the 

utility functions are also convex.  

3.3 "User's Best Response"  

Definition 7 Given      
       

       the mixed strategy profile     
    is referred to as a best 

response of user i at time interval  [0, T], if:  

 
Where Q denotes the space of all the possible mixed strategies profiles for users who enter 

the network at t . 

For each time interval  [0, T], let     
    (    

          
       

     )      
      be a mapping that 

finds, for user i N, the set of best responses for a profile of mixed strategies      
       

      

that is employed by the other users. A formal definition of this set of functions is presented 

below. 

Definition 8 A best response mapping of user i[1, N], at time interval  [0, T] is mapping 

    
     ∏         | |

    
 defined as follows: 


Note that each one of the N users arriving at the same time interval   [0, T], is a non-

cooperative user, who chooses one of his best responses, based on the others' path-

choices. For each time interval, the process of choosing a best path-choice by every user 

can be considered as a stand- alone stage modelled as a static case.  

Therefore, the DMSUE model examines multi stage process of static cases (based on the 

MSUE model). At each stage, the static case modulation takes under account the results 

(path-choices) of the previous stages.  

Corollary 1 For each time interval  [0, T], the set of the best response mappings     
      

matches to the best response mapping {bi(i)}  in the MSUE (the static case) while the 

network occupancy is based on the path-choices that were made at the previous time 

intervals.  

The properties of the best response mapping are described next. We consider these 

properties in the followed discussion, referring to the Dynamic Mixed Strategy User 

Equilibrium (DMSUE). From the last proposition we may obtain the following.  

Corollary 2 In a transportation network that satisfies our assumptions, for each time interval 

  [0, T], given a strategy profile of the users      
       

     ,user i  [1, N] always has a best 

response. 
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THE DMSUE PROBLEM 

This section consists of two parts. First, the DMSUE is defined and the conditions of its 

existence are discussed, and the existence of at least one specific solution is proved. Next, 

the existence of a specific DMSUE in general networks is analyzed, based on KKT method.  

DMSUE Definition  

As describe above, the DMSUE model examines multi stage process of static cases. Thus, 

the Dynamic Mixed Strategy (Nash) User Equilibrium (DMSUE) defined as a multi stage 

process of Instantaneous Mixed Strategy (Nash) User Equilibrium (IMSUE), which is 

described as follows.  

Definition 9  Given a time interval  [0, T], an Instantaneous Mixed Strategy (Nash) User 

Equilibrium (IMSUE) is the mixed strategy profile  = (   
     

   
    

    

     
   

    
    

     
) in 

which i [1, N ]:  

 

Where  =|OD|, and   
    denotes the number of users enter the network at    from origin    to 

destination   .  

The instantaneous mixed strategy equilibrium (IMSUE) definition can be associated to the 

best response mapping, as shown next.  

Corollary 3 Given a time interval   [0, T], an instantaneous mixed strategy (Nash) 

equilibrium profile is achieved, when each one of the users choose his or her best response 

(i.e., for every user i with OD pair        , who enter the network at    ,    
      is the solution 

of the optimization problem presented in   (11)). 

Note that in the optimization problem presented in (11)), there are continuously differentiable 

convex objective function     (   
     ,     

      
     ) and inequality constraints, with linear 

equality constraints. Thus, it has at least one solution (that is one way to prove corollary 2).  

However, the last corollary does not prove the convergence of all best responses into an 

equilibrium point. This is proved in the next theorem.  

Theorem 1 A network congestion game (or transportation network) that follows our 

assumptions (i.e, a game in which the users who enter the network in each time interval  

[0, T] choose their paths, based on their estimated travel-time function (definition 6)), admits 

at least one instantaneous mixed strategy user equilibrium (IMSUE).  

Proof The existence of the IMSUE cannot be proved by Nash's theorem [Nash, 1951], since 

in our model the users do not choose their path-choices based on the expected travel time, 

but based on their estimated travel time, as in equation (8). A network that satisfies our 

assumptions (N  users who make their path-choices based on the estimate travel time 

function) has Nash equilibrium. In addition, each time interval  [0, T], is a special case of 

the static transportation network, in which the network occupancy is based on the previous 

users path-choices. Therefore, we conclude that in a network that satisfies our 

assumptions; at least one IMSUE operating point exists.  
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So far we defined instantaneous mixed strategy equilibrium, based on the static case. An 

extension is needed in order to include dynamic into it, as defined next.  

Definition 10 A mixed strategy profile of all the time intervals in a checked period  [0, T], 

 = (1
, ..., 

, ..., |T|

)  is a Dynamic Mixed Strategy (Nash) User Equilibrium (DMSUE) if  

[0, T], 
 is an Instantaneous  Mixed Strategy (Nash) Equilibrium. Mathematically, a 

Dynamic Mixed Strategy (Nash) Equilibrium (DMSUE) is defined as follows.  

 
Similarly to the instantaneous mixed strategy (Nash) equilibrium, there is equivalent 

definition of the dynamic mixed strategy (Nash) equilibrium in terms of best responds.  

Corollary 4 DMSUE is a path-choices profile in which for every time interval  [0, T], each 

one of the users i [1, N ] choose his best respond.  

Note that the choices (the best responses) of users who enter at t depend on the occupancy 

of the network. This occupancy depends on the path-choices made by the users who enter 

at the previous time intervals ′  . Therefore, the best responds of the users who enter the 

network at t is based on the best responds of the users who enter it at t ′ (where ′ <  ).  

Theorem 2 A network congestion game that follows our assumptions, admits at least one 

Dynamic Mixed Strategy User Equilibrium (DMSUE).  

Proof Under the assumptions that the users who enter the network in each time interval  

[0, T] choose their paths, based on their estimated travel- time function, we proved that there exists 

an IMSUE point (theorem 1). This equilibrium of the users who enter at each time interval  

does not vary with time, (since we assume that the users' path-choices are made only before 

they enter the network). In this way, all the users who enter the network at each time 

interval create a mixed strategy equilibrium profile (at least one profile). Thus, at least one 

DMSUE exists.  

Note that the DMSUE is a nonlinear convex optimization problem (also referred as "convex 

program"), since it's a multi-stage IMSUE problems (which are all convex). Moreover, this 

problem can be written as follows:  

 
The optimization problem can be rewritten as:  
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Since the optimization problem above (14) is convex, we can use the KKT method in order 

to find its solution, as shown in the next section.  

DMSUE Analysis based on KKT Method  

Within the KKT method, an optimization problem is divided into two different parts. The first 

part is the objective function and second one includes the constraints. In optimization 

problem (14), the objective function is as follows:  

 
Note that the above expression is nonlinear since the link performance functions le( ) are 

nonlinear functions. The constraints are divided into three sets. The first set includes part of 

the equality constraints in (14) optimization problem, denoted as a set of functions 

      (   
    )         : [0, 1]  , is defined as follows:  

 
The second set equality constraints in the problem, is denoted as a set of functions 

      (   
    )             , is defined as follows:  

 
In addition, there are N    non-negative constraints:  

         
Note that the standard optimization problem presented in (14) sustains the KKT conditions; 

both the objective function and the constraints are continuously differentiable. The 

Lagrangian function is constructed by adding the constraints to the objective function as 

follows: 

  
According to the KKT method, the optimal (minimal) value of the objective function is the 

solution of the following equation:  

                    
Next, the lagrangian function is differentiated by each set of variables.  
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Based on the partial derivatives computation in (22), we conclude that the KKT multipliers 

    
 

   ,i [1, N ]. Furthermore, if all the KTT multipliers are zeros (i.e,  ,  i  ,i [1, N ],      ), the 

trivial solution will achieved; Given two arbitrary users i, k, who enter at the same time interval  

and share the same OD pair, the analysis conducted in (22) suggested that:  

 
Since the users share the same OD pair               . For each e      

 
The combination of equations (23) and (24) with the constraints in (22) yields the trivial 

solution for the optimization problem, according to KKT. That is,  , i = 0,i [1, N ], and 

therefore:  

                                                   
Thus, we proved that the trivial DMSUE solution which exists in every network is achieved 

where all the other users who enter the network at t , with the same OD pair (presented as 

user j), share also the same path-choices,    

        
      . This holds for every arbitrary 

users i , k with the same OD pair. Therefore, the trivial solution is that all the users who 

share the same OD pair and the entrance time to the network  , have the same path-choices.  

In particular, we proved that the optimization problem in (14) has at least one solution. As a 

result, there exists at least one IMSUE for every  [0,T], hence, there exists at least one 

DMSUE.  

The solution of the mathematical program represents the equilibrium point, in which all the 

users who enter the network at the same time and share the same source and destination - 

have the same path-choices. This has an intuitive interpretation: all the users enter at the 

same time with the same OD pair, share the same knowledge, as discussed next.  
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Symmetric Equilibrium  

As mentioned before, we assume that   
      users enter the network at the beginning of 

every time interval  [0, T] from source    to destination   . It is reasonable to assume that each 

one of the   
      users who enter the network  at a given time and share O-D pair (       ), 

have the same available path set        and the same estimated travel-time function. 

Therefore, they make their path-choices based on the same optimization problem 

presented in (12). Users who share the same estimated travel time (utility) functions are 

also referred to as symmetric users. A game with symmetric users is called symmetric 

game. Mathematically, symmetric game is defined as follows:  

Definition 11 [Chang et al.,2004] A normal-form game is symmetric if all users have the 

identical strategy spaces and the same utility function: ui(i, i ) = u j (j, j ),i≠ j I.  

Corollary 5 According to the trivial DMSUE, given a directed network G = (E,V), all the   
      

users who enter the network each time interval and share the same properties (       ) (i.e., 

source, destination and arrival time, respectively) are considered as symmetric users, 

since:         
          

       
        =         

          

       

        where i≠ j [1,   
     ]  

Therefore, their path-choice profile is symmetric as well, and referred as a symmetric profile. 

A symmetric profile which satisfies Nash equilibrium conditions is called a symmetric 

equilibrium.  

The DMSUE Uniqueness  

Assume that every   
      users enter the network at each time interval  , are  symmetric, the 

DMSUE exists. Next, under this assumption, its uniqueness is discussed.  

Corollary 6 Under the assumptions of the IMSUE, a single OD network, with symmetric 

users at each time interval  [0, T ], has a unique IMSUE.  

Proof According to Gofer [Gofer,2008], a static single OD network that satisfies our 

assumptions has a unique Nash equilibrium. In addition, each time interval  [0, T], is 

special case of the static transportation network, in which the network occupancy is based on the 

previous users path-choices. Therefore, we conclude that a single OD network that satisfies 

our assumptions has a unique IMSUE operating point. Moreover, we may conclude that in 

single OD networks, there is a unique DMSUE.  

Corollary 7 A single OD network congestion game that follows our assumptions has a 

unique DMSUE.  

Proof Based on corollary 6, under our assumptions, a single OD network has a unique 

IMSUE. Therefore, at each time interval, the users who enter the single OD network create 

a unique mixed strategy equilibrium profile. Thus, the DMSUE is unique.  

ILLUSTRATIVE EXAMPLES  

In this section, two examples will be used to demonstrate and discuss the properties of 

DMSUE. The first example is the well-known Braess paradox network [Braess et al., 2005]. 

The second example is a simple grid network. In order to obtain the users' path-choices (the 

flow), a DMSUE simulation was developed. The simulation solves the optimization problem 

for each time interval  and demand level N , according to the optimization of the previous 
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time interval ( 1). For each example, the change in the users' path-choices with respect to 

the demand level was examined.  

Example 1 – Braess' Network  

Consider a network with 4 nodes, 5 links, and a single OD pair (1 4), which is connected by 

three paths. These paths are denoted by their nodes 1 2 4, 1 3 2 4 and 1 3 4, and 

also as   ,   ,    respectively (see figure 4). The network links' performance function 

follows the BPR link travel time, where the parameters of each link are presented in table 1.  

Table 1 – Braess’ Network's Link Parameters 

Link Connected 
nodes 

Free-flow 
travel time 

capacity 

1 1-2 3 50 

2 2-4 2 100 

3 1-3 2 100 

4 3-4 3 50 

5 3-2 1 70 

                                          Figure 1 – Braess’ Network 

The users' path-choice observed in this example are presented in figure 2, for two different 

demand levels n = 55, n = 62. The X-axis represents time intervals, and the Y-axis 

represents the path-choice probability of choosing paths p1 and p2 by users who enter the 

network at each time interval. Note that in this case, for every time interval  , for every user 

i, there are three paths the user can choose from (i.e,  [0, T],i [1,   
   ],     

       
   

    
    ). Therefore, it is sufficient to show only the probabilities for    and   , as shown in 

figures 2.  

 

Figure 2 – Braess’ Network – Convergence of Users’ Path Choice over Time  

Figure 2 shows that the user's paths-choices over time intervals converge to   =32%, 

  =36%, and consequently   =32%. This convergence matches the path proportions for the 

static case. The difference between the travel times achieved by the users, is presented in 

Figure 3 (for n = 55, in the left, and for n = 62, in the right). 
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Figure 3 – Braess’ Network's Travel Times 

Example 2 – Grid Network  

Consider a network with 6 nodes, 7 links, and a single OD pair - 16, which is connected by 

two paths. These paths are defined as   = 1 2 3 6,    = 1 4 5 6 and    = 1 2 5 6. 

The network links' performance function follows the BPR link travel time, where the 

parameters of each link are presented in table 2.  
 

Table 2 – Grid Network's Link Parameters of  

Link Connected 
nodes 

Free-flow 
travel time 

capacity 

1 1-2 1 50 

2 2-3 2 70 

3 1-4 5 70 

4 4-5 5 50 

6 5-6 3 100 

7 3-6 2 100 

                                              Figure 4 – Grid Network 

The users' path-choices over time are presented in figure 5, for two different demand levels: 

n=50, and n=100.  
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Figure 5 – Grid Network – Convergence of Users’ Path Choices over Time 

Similar to the Braess Network case, Figure 5 shows that the user's paths-choices over time 

intervals converge to   =42%,   =39%, and consequently   =19%. This convergence 

matches the path proportions for the static case. The difference between the travel times 

achieved by the users, is presented in figure 6 (for n = 50, in the left, and for n = 100, in the 

right).  

 

Figure 6 – Grid Network – Travel Times 

SUMMARY AND DISCUSSION  

In this paper, we developed the DMSUE framework for the solution of the dynamic traffic 

assignment problem. This approach assumes that users, because of contemporary 

transportation information systems, have better information about the variables that affect 

their path choices, such as travel times and costs. The main source of uncertainty that 

remains is related to the path choices of other users. We assume that the network's users 

cope with this uncertainty by using mixed strategies - they choose their paths at random 

according to some path-choice probability. A given user determines his path-choice 

probability according to a criterion of expected travel-time minimization, while taking into 
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consideration the path-choice probabilities of both the users who enter the network at the 

same time and the users who enter the network before and still exist there. Moreover, we 

suggested a way to extend this assumption, by taking under consideration the future 

congestion based on traffic historical information.  

Another assumption that was made within the DMSUE framework is that each user chooses 

his path-choice only when he enters the network. In order to overcome this assumption, 

another approach can be used, as multi-stage DMSUE, for each of the links. This way, 

before entering the network, the user would choose his path-choice, based on the current 

and the history data. Then, when he enters to each of the intersections, he would estimate 

his travel time again, and choose his path-choice, based on more updated information. This 

type of assignment also referred as Markov assignment (see Cascetta, E., 1989)). and 

Hazelton, 1998).  

However, this new approach's calculation may have higher complexity, since each of the 

users who enter the network at the same time interval are now divided into all the possible 

links choose, in each intersection. Therefore, instead of analyzing only the number of paths 

for each time interval, according to the new approach, the number of possible links will take 

into consideration, for every intersection, for each time interval. The complexity is therefore 

increases in each time interval for each node in the network by the number of possible links 

emanating from the node. Furthermore, such approach must prevent users from travel in 

loops. Thus, also the set of links each of the users pass should also take under 

consideration while choosing a new path-choice in every intersection.  

Under the DMSUE assumptions, an operating point of the system at a single time interval, 

at which no user has an incentive to choose a different mixed strategy - all path choice 

probabilities provide the "best response" to the other users' mixed strategies, is defined as 

instantaneous mixed strategy user equilibrium (IMSUE). This definition is extended to the 

dynamic mixed strategy user equilibrium (DMSUE) by consider the IMSUE operating point 

of each time interval.  

An investigation of the mathematical properties of the DMSUE yields the following: (i) A 

network that follows our assumptions has a DMSUE operating point; (ii) A symmetric 

DMSUE exists, referring to each OD pair - i.e, all users traveling between any given pair of 

source-destination nodes, with the same entrance time, apply the same mixed strategies in 

DMSUE.  

A comparison of network performance in DMSUE with the traditional DUE and dynamic 

SUE models yields some differences. The main difference lies in path travel times (or, more 

precisely, expected path travel times): in DMSUE, they do not follow Wardrop's first 

principle. That is, in DMSUE it is possible that the travel times of some of the paths used will 

be different and not equal. This results from the path-choice mechanism, which is based on 

users choosing their "best response" to other users' path-choices, rather than on equalizing 

the paths travel times as in the DUE and dynamic SUE approaches.  

As mentioned before, Haurie and Marcotte (1985) established the fact that Nash equilibrium 

converges to Wardrop equilibrium when the number of the identical users sharing the same 

utility functions become large. Therefore, in each time interval, the IMSUE will converge to 

the UE. Thus, the DMSUE will converge to DUE models.  

This paper lays the foundation for the DMSUE approach. It is also important to address 

other issues: applying this framework to different networks' topologies, formulating and 
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analyzing developing the DMSUE flow path-choices patterns and the travel times 

distribution.  
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