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Title: The application of three methods to measure the statistical association between different groups and the 

concentration of air pollutants in Montreal: a case of environmental equity   

Abstract  

Analyzing the spatial dispersion of pollutants has led to developing measures in order to determine whether 

certain population groups are disproportionately exposed to these hazards. The proxy of distance from major 

roads, mathematical modeling, and exposure as established by pollutant measurement are three of the main 

techniques developed to determine environmental inequity with regard to a particular group in the broader 

population. A few studies performed in different countries have concluded that low-income households and, to a 

lesser extent, ethnic minorities, tend to reside in the most polluted areas. The main objective of this article is to 

compare results obtained from three methods for analyzing the spatial concentration of polluting emissions on 

the Island of Montreal. The second objective is to determine whether groups vulnerable to air pollutants—

namely individuals under 15 years old, the elderly, visible minorities and low-income households—are subjected 

to environmental inequity associated with air pollution. The results obtained by the three techniques for 

evaluating environmental equity firstly show that there are differences between these techniques. Secondly, they 

show that the groups selected based on age are not afflicted by environmental inequity. Finally, they indicate that 

low-income households in Montreal and, to a lesser extent, visible minorities, more frequently live near major 

roads and in areas with higher pollutant concentrations. However, this environmental inequity for low-income 

households can be compensated by positive aspects related to their urban environment.  

1. Introduction 

Transportation is a source of harmful particles that have an impact on health, namely nitrogen oxides (NOx) [1] 

and, to a lesser degree, carbon monoxide (CO) and particulate matter (PM) [2, 3]. As a result, living within 200 

metres of a major road is considered as a potential health hazard [3, 4], particularly for asthma [5, 6], lung 

development deficits among children [7], and heart problems [8-10]. The literature on environmental equity 

looks at interrelations between characteristics related to the environment and to inhabitants within one same 

territory. Researchers in this field attempt to find out whether resources or pollutants are distributed fairly [11]. 

In other words, are certain populations—defined according to various characteristics such as age, ethnic origin or 

low income—more commonly located in areas with fewer resources or more environmental pollutants? A 

number of studies have shown that areas with high proportions of low-income households are characterized by 

high concentrations of pollutants [12]. According to many authors [13-15], the combination of socio-economic 

inequalities and exposure to air pollutants contributes to physiological vulnerability among members of low-

income households. Other studies have noted that the health impacts of pollution are stronger among children 

and the elderly. Indeed, children are more vulnerable to the consequences of air pollutants because their organs 

and nervous systems are not fully developed [12] and they breathe in more air per unit of mass [16]. In addition, 

because they are less mobile, they are more confined to their residential environments, as are the elderly [17-19]. 

If these environments offer poor conditions, they will be more affected than other age categories.  
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In the past 20 years or so, various methodological approaches have been proposed to evaluate pollutant exposure 

among vulnerable groups. The first step is to determine pollution levels. Among the techniques for evaluating 

pollution levels, the most often used are proximity to the source of pollution, modeling of pollution levels, and 

actual measurement of concentrations. Recently, certain authors such as Kingham and Dorset [20] and Maantay 

et al. [21] have suggested excellent syntheses of the literature that compare these techniques and identify their 

respective strengths and limits. The stakes are high: an imprecise measurement could lead to erroneous or 

unreliable results when evaluating environmental inequity for a given group [22]. Yet to our knowledge, no 

empirical analysis has simultaneously drawn upon these different techniques in a single study of one same 

territory in order to evaluate whether they would produce different results in line with environmental equity. 

Following on Kingham and Dorset [20] as well as Maantay et al. [21], we have therefore conducted an empirical 

evaluation of environmental equity related to pollution exposure in Montreal using the three above-described 

techniques.  

2. Literature Review 

In this section, we will briefly review the principal results of recent studies dealing with environmental equity in 

connection with air pollution. We will then address methodological questions by describing the three techniques 

most often used to evaluate pollution levels, while identifying their strengths and weaknesses. But first, it is 

important to define the concept of environmental equity, also called distributional justice. The current vision 

associated with environmental equity in the literature can be defined as follows: “Environmental justice policies 

seek to create environmental equity: the concept that all people should bear a proportionate share of 

environmental pollution and health risk and enjoy equal access to environmental amenities” [23]. Environmental 

equity studies therefore often tend to examine the distribution of health risks resulting from exposure to pollution 

for different groups defined by age, ethnic origin or socio-economic level [24]. Environmental equity is often 

confused with environmental justice. The distinction between the two concepts, according to Cutter [25], is that 

environmental justice involves more than an equal sharing of harmful environmental agents. It must, for 

instance, provide sufficient protection for various population groups exposed to such hazards [26].   

2.1. Environmental Equity and Air Quality 

Studies performed in Canada, the United Kingdom, New Zealand and the United States have shown that low-

income households tend to be exposed to substantially higher levels of polluting emissions than the affluent 

classes, even though they have fewer vehicles [22, 24, 27, 28]. Research on ethnic minority population’s 

exposure to higher pollution levels are less conclusive, as results vary depending on the context of the study [29]. 

In the United States, a number of studies and particularly those of Chakraborty [22] and Morello-Frosch et al. 

[28] have shown statistically positive relationships between the presence of ethnic minorities and concentrations 

of air pollutants. On the other hand, in Canada, with the exception of Latin Americans in Hamilton, Buzelli and 

Jerrett [30, 31] found no statistically significant and positive relationship between proportions of ethnic 

minorities and concentrations of polluting emissions in the cities of Hamilton and Toronto.  
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In spite of their physiological vulnerability to air pollution, children and the elderly have not often been 

addressed in environmental equity studies. Chaix et al. [32] have nevertheless reported that children under 15 

years old from low-income households in Malmö, Sweden were in general exposed to statistically higher NO2 

levels than children of the same age with higher socio-economic status. As for populations over 65 years old, 

Brainard et al. [24], Mitchell and Dorling [33] and Chakraborty [22] found no environmental inequity 

experienced by this group in relation to air pollutant exposure.  

2.3. Local Measurements of Air Pollution 

Over the past two decades, three techniques have widely been used to evaluate the spatial concentration of air 

pollutants. First among these, is proximity to sources that generate air pollutants an approach that has often 

involved defining areas of proximity or ‘buffer zones’ varying between 0 and 300 m around highways or major 

roads [34, 35] or creating density indexes based on road network hierarchy [2].  

More specifically, techniques within this approach consist in selecting territory adjacent to major roads, since 

pollution concentrations are thought to be higher there. Although they are easy to use—thanks to geographic 

information systems—and make it possible to calculate a potential indicator to identify the most at-risk areas for 

health, this approach has also been the focus of criticism. The strongest criticism is that it does not allow precise 

evaluation of a pollutant’s concentration [20]; indeed, it merely represents a proxy of air pollution by positing 

that such pollution is higher around major roads. Without providing an exhaustive list, Table 1 shows studies 

that implement this approach, along with the context of the study and the statistical method used to assess 

environmental equity. 

The table clearly shows that most studies use a distance of 200 m or less (150 or 75 m), either from highway 

sections or from both highway sections and major roads. Some authors such as Chakraborty et al. [36] and 

Chakraborty [34] have performed this same exercise but only for highway sections undergoing transportation 

system changes. To evaluate environmental equity, logistical regression is very often modeled with the binary 

dependent variable of whether a census tract or city block is located at least n metres from a highway stretch 

(200 m, for example), and with the independent variables of the proportions of targeted groups, for example 

ethnic minorities or low-income individuals. 

Although very interesting, this approach has come under criticism since using a binary variable—the minimum 

distance of 200 m or not—can conceal substantial variations in exposure. Two different city blocks can, for 

instance, be located within 200 m: one at 10 m, the other at 190 m. Furthermore, some blocks can be located at 

the same distance from the highway (50 m, for example), but be surrounded by very different overall lengths of 

highway within a 200-metres radius (800 m versus 1600 m, for example). To solve this problem, some authors 

[2, 3, 37, 38] recommend creating density indexes, based on either traffic volume or roadway hierarchy. For 

example, Gunier et al. [38] created 200-metres buffer zones around city blocks, then summed the traffic volume 

per average day for the entire year, multiplied by the length (in miles) of the road section located within the 
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zone. Finally, they divided the product by the total land area in the zone. As a result, for each block, they arrived 

at the number of vehicles per mile and per day, per square mile. 

Table 1. Studies of environmental equity that use parameters of proximity to major roads 

Study Objective Site Statistical 

Method 

Houston et al. [39] To determine whether children under 6 years old belonging 

to ethnic minorities tend to be more frequently located 

within 200 metres of major roads with daily traffic of over 

50,000 vehicles 

South 

California 

Logistic 

regression  

Bae et al. [35] To determine whether low-income households, ethnic 

minorities, the elderly and children are over-represented 

within 200 metres of highways 

Portland and 

Seattle 

Cluster analysis 

Gunier et al. [38] To determine whether individuals below 15 years old 

belonging to ethnic minorities or low-income households are 

more frequently located within 200 metres of major roads 

with daily traffic of over 500,000 vehicles 

California Chi-squared 

test and 

Spearman 

correlation  

Cesaroni et al. [40] To determine the population groups selected by age, income 

and education level that tend to reside within 150 metres of 

a major road 

Rome Logistic 

regression 

Green et al. [41] To determine whether public schools in California located 

within 150 metres of a major road with daily traffic of over 

50,000 vehicles are more frequently composed of ethnic 

minorities (Hispanics and Blacks) and young people from 

low-income households 

California Logistic 

regression 

Jacobson, Hengartner 

and Louis [42] 

To compare the results of statistical approaches to determine 

the over-representation of low-income households and ethnic 

minorities located within 200 metres of a highway 

New York Logistic 

regression and 

linear 

regression 

Chakraborty, 

Forkenbrock and 

Schweitzer [36] 

To determine whether low-income households and ethnic 

minorities are over-represented within 400 metres of a 

roadway projected to undergo a transportation system 

change 

Waterloo 

 (USA) 

Univariate 

statistics  

Chakraborty [34] To determine whether low-income households and ethnic 

minorities are over-represented within 150 metres, 800 

metres and 1600 metres of a roadway projected to undergo 

a transportation system change 

Tampa Bay 

(USA) 

Two samples 

test of 

proportion 

Amram et al. [43] To characterize the income level of households in areas 

where Canadian elementary schools are located within 75 

metres of a major road 

Canada Logistic 

regression 

The second most frequently used technique is mathematical modeling. This approach consists in estimating 

pollutant concentration based on data relative to traffic data volumes as well as meteorological information such 

as temperature, wind force and direction, etc. [20]. The advantage of this technique is that it allows the 

generation of a spatial dispersion map for air pollutants on a large scale, for example a given city. However, 

some authors such as Kingham and Dorset [20] point out that the accuracy of these mathematical models can 

vary significantly depending on the data and parameters integrated into the model, particularly in line with 

meteorological factors. Indeed, inaccuracies are inevitable because of the complexity of meteorological 

processes and their spatio-temporal variability. Even so, this approach remains more accurate than one based 

solely on proximity to major roads. 
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Table 2 presents a few studies that draw upon a mathematical dispersion model to study environmental equity. 

Their general aim is to measure statistical associations between pollutant levels obtained through modeling, on 

the one hand, and several variables relative to deprivation and to proportions of ethnic minorities or children, on 

the other. To this end, several statistical methods have been used: regression models, nonparametric tests, etc. 

Table 2. Studies of environmental equity based on mathematical modeling of air pollutants 

The final technique consists in constructing statistical or geostatistical models to predict pollutant levels for an 

entire territory based on sampled locations where pollutants are measured using sensors (most often for NO2) 

over a given period. NO2 is the pollutant used most often to measure pollution concentrations generated by road 

transportation, since it has high co-locational association with other types of pollutants such as particulate matter 

(PM) and CO [47, 48]. Once the pollution measurements are collected at n points in the studied area, two models 

can be used to generate a map of the territory: geostatistical interpolation methods such as kriging [30, 49], or 

Study Objective Site Statistical Method 

Kingham, Pearce and 

Peyman [27] 

To measure associations between  

PM10 concentration and income level 

at the census tract (CT) scale 

Christchurch, 

New Zealand 

Comparison of the levels of PM10 

by quintiles of deprivation  

Pearce and Kingham 

[44] 

To measure associations between  

PM10 concentration and income 

level, as well as ethnic origin, at the 

CT scale in New Zealand 

New-Zealand Comparison of the levels of PM10 

by deciles of income, race, age and 

multivariate regression 

Brainard et al. [24] To measure associations between 

CO and NO2 concentrations and 

percentages of ethnic minorities, 

young people, and deprivation level 

at the Enumeration District scale 

Birmingham, 

United 

Kingdom  

Kolmogorov-Smirnov test 

Mitchell and Dorling 

[33] 

To measure associations between  

NO2 concentration and deprivation, 

ethnic origin and age at the Ward 

scale in Great Britain 

United 

Kingdom  

Comparison of the levels of NO2  

by deciles of income, race and age 

Chakraborty [22] To measure associations between the 

concentration of cancer and 

respiratory-related cases and traffic 

data volumes by integrating 

proportions of low-income 

households, ethnic minorities and 

elderly individuals at the CT scale 

Tampa Bay, 

USA 

Linear regression and multivariate 

regression 

Chaix et al. [32] To evaluate exposure of children 

under 15 years old to NO2 according 

to deprivation level 

Malmö, 

Sweden 

Kulldorff spatial scan statistic and 

multivariate regression 

 

Kruize et al. [45] To measure associations between  

NO2 concentration and income level 

at the scale of areas identified by zip 

code 

 

Rinjimond, 

Pays-Bas 

Cumulative frequency curves  and 

chi-squared test 

Briggs et al. [46] To measure associations between 

spatial concentrations of  NO2, CO, 

PM, proximity to major roads and 

deprivation levels at the Ward level 

in England 

England Pearson and Spearman 

correlations, T-test 
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land-use regression [31, 50-52]. It should be noted that land-use regression is now judged to be a more precise 

technique than kriging and spatial interpolation methods [53]. Briefly, it consists in constructing a regression 

equation with the observations being the n sampled points, the dependent variable being pollutant concentration 

(for example NO2), and a whole series of independent variables including proximity to major roads, length of 

road sections near the sampled area, traffic data volumes, residential density, presence of industrial or 

commercial equipment or parks, etc. [1, 54]. Once a robust regression model is obtained (with high R
2
), the 

equation is applied to the entire territory. For example, Crouse et al. [1] apply it to 5 m x 5 m cells overlaid on 

the entire territory, for which all values of independent variables have been calculated in GIS. The advantage of 

this technique, as Kingham and Dorset [20] have noted, is that it allows pollutants to be measured at a much 

finer scale, and at low cost. However, the technique has no longitudinal scope since it is based on pollution data 

measured at a specific time and under conditions specific to the time of sampling. Table 3 presents a few 

environmental equity studies that have used pollutant data measured using the land-use regression technique. For 

these reasons, most studies that employ land-use regression are primarily focused on methodological 

considerations, and much less toward assessing environmental equity in line with air pollution.  

Table 3. Studies of environmental equity that draw upon data measurements and land-use regression  

Study Objective Site Statistical Method 

Buzzelli and Jerrett 

[31] 

To measure statistical associations 

between NO2 concentrations and 

income levels, as well as the 

proportion of ethnic minorities per 

neighbourhood 

Toronto, 

Canada 

Logistic regression and linear 

regression 

Crouse, Ross and 

Goldberg [50] 

To measure statistical associations 

between NO2 concentrations and 

income levels, as well as the 

proportion of ethnic minorities, lone 

-parent families and people living 

alone at the CT scale 

 

Montreal, 

Canada  

Pearson correlations   

Richardson, Pearce and 

Kingham [51] 

To measure statistical associations 

between PM10 and income level at 

the CT scale 

 

Christchurch, 

New Zealand 

Poisson negative binomial test 

Su et al. [52] To measure statistical associations 

between NO2 concentration and 

household income, as well as the 

proportion of immigrants, at the CT 

scale 

Vancouver and 

Seattle 

Linear regression 

2.4. Research Objectives and Questions 

In light of this literature review, it is clear that all three approaches exhibit distinct advantages and 

disadvantages. It should be recalled that, even though it is very easy to operationalize, proximity to major roads 

is only a proxy of air pollution. Mathematical modeling for its part remains highly effective at the regional level, 

but somewhat inaccurate at the local level owing to the difficulty of integrating meteorological parameters at a 

finer scale. Finally, although the kriging and land-use regression approach of using data from pollution sensors 
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can provide locally accurate measurements, they have no longitudinal scope since they measure pollution at a 

given time t, in spite of the wide agreement that pollution levels can vary depending on not only the season, but 

also the meteorological conditions. These observations lead us to pose two research questions. First, are the 

measurements obtained by the three techniques similar for one same city block or, to the contrary, do they show 

significant discrepancy? Despite their respective particularities, do these three types of measurements show very 

different results in terms of environmental equity for population groups that are vulnerable to air pollution (low-

income population, visible minorities, children and the elderly)? Put otherwise, in statistical terms, what are the 

correlations between the three measurements, and can the same associations be observed between each of the 

four population groups studied and the pollution indicators obtained through the three techniques? Answering 

these questions seems highly relevant, since past studies have shown diverging results for environmental equity 

depending on the parameters used to measure pollution. Finally, revealing a situation of environmental inequity 

for a given group across all three measurement techniques would clearly demonstrate the existence of this 

inequity, compared to a traditional approach based on the use of a single method for measuring pollutants. 

3. Methodological Approach 

3.1. Territory of Study, Targeted Groups and Scale of Analysis 

This study focuses on the Island of Montreal (Canada), which, in 2006, was home to 1.85 million inhabitants 

across 499 km
2
.  

Research studies in the field of environmental justice initially concentrated on the presence of environmental 

hazards in neighbourhoods dominated by poor populations or particular racial groups. Today, researchers 

introduce new social categories [55] defined by age [34], level of disability or gender [56]. Buckinham and 

Kulcur [55] suggests that different categories of people be taken into account, especially owing to differentiated 

vulnerabilities that vary from one group to another. 

The study identified four targeted groups, namely 1) people belonging to low-income households, 2) people who 

declared belonging to visible minorities, 3) young people under 15 years old, and 4) people 65 years old and 

over. We are therefore interested in two ‘traditional’ groups of study in environmental equity: low-income 

individuals and members of visible minorities
1
 (the Canadian reality makes this last group a more relevant 

category than Afro-American or Hispanic). Our study also examines two groups that are especially 

vulnerable to air pollutants, as mentioned earlier, namely the young and the elderly. The number of 

individuals in these groups and for the total population were extracted from the 2006 census by Statistics Canada 

at the ‘Dissemination Area’ scale, that is, the most accurate unit of analysis in which 400 to 700 people reside.  

                                                           
1
 The variable of visible minorities refers to all non-white individuals except for Amerindians, i.e., the census categories of 

Chinese, South Asian, Filipino, Latin American, Black, Arab, Korean, Japanese, South East Asian, West Asian and South 

Sea Islander (Statistics Canada, 2006). 
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Determining the existence of environmental inequity for a given group requires analysis at a fine geographical 

level, since pollution levels can greatly vary at the scale of a neighbourhood and even a census tract or 

dissemination area. As a result, we selected the city block as a spatial division from which to generate pollution 

indicators and the variables relative to the four studied groups. It should be noted, however, that Statistics 

Canada only provides data on the total population and the number of dwellings at the city block scale. To 

address this issue, we estimated the numbers of each group consistent with the approach recently put forward by 

Pham et al. [57]: 

 

where ti represents the estimated population of the group (low-income individuals, for example) in the block, ta 

the group’s population in the dissemination area, and Ti and Ta respectively the total population in the block and 

the dissemination area. The descriptive statistics for the populations estimated in each of the groups are 

presented in Table 4. 

 

Table 4. Univariate statistics of studied groups at the city block scale 

Groups Abbr. N Mean SD Min Median Max 

0-14 years old Pop014 10 372 27,40 31,35 0,00 19,00 676,00 

65 years old and over Pop65 10 372 26,95 50,43 0,00 16,00 1810,00 

Visible minorities VisMin 10 372 43,91 80,60 0,00 18,00 1481,00 

Low-income population LowInc 10 372 50,84 80,97 0,00 24,00 1641,00 

0-14 years old (%) Pop014Pct 10 372 15,91 5,35 0,00 15,97 41,38 

65 and over (%) Pop65Pct 10 372 14,92 8,37 0,00 13,92 95,15 

Visible minorities (%) VisMinPct 10 372 21,11 16,52 0,00 17,31 96,60 

Low-income population (%) LowIncPct 10 372 23,69 16,17 0,00 21,26 94,42 

S.D.: Standard deviation 

3.2. Indicators of Proximity to Major Roads 

To construct our first measurement for estimating pollutants, we proceeded as follows. Based on road network 

data for the Island of Montreal (Geobase), we constructed different indexes of road density in buffer zones 

within a radius of 200 m created around centroids of city blocks, specifically 1) the proportion of the highway 

structure (length of highway sections divided by total length of the network within the buffer zone); 2) 

proportion of secondary roads—collector, arterial and expressway—and finally 3) the proportion of local streets. 

The selected distance was 200 m, since the effects of air pollutants are rarely experienced beyond this distance 

[4]. It is also worth noting that to improve the accuracy of these measurements, the location of the city block 

centroid was adjusted according to the occupation of residential land as illustrated in Figure 1. These operations 

were performed in GIS using ArcGIS version 10 [58]. 
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Figure 1. Adjustment of location for the city block centroid 

3.3. Pollution Indicators Obtained through Mathematical Modeling 

For pollution indicators obtained through mathematical modeling, we used data from the MOTREM model 

developed by the Ministère des Transports du Québec (MTQ) in 2011. MOTREM models the levels of three 

pollutants (CO, NOx and PM2.5 particles) over 12,691 road sections on the Island of Montreal at five times during 

a fall day: morning peak hours (6:30 a.m. to 9:30 a.m.), daytime (9:30 a.m. to 3:30 p.m.), afternoon peak hours 

(3:30 p.m. to 6:30 p.m.), evening (6:30 p.m. to 12:00 a.m.) and night (12:00 a.m. to 6:30 a.m.). These 12,691 

road sections cover the entire island of Montreal and represent a sample of 45% of the total length of the 

Montreal road network. The parameters integrated into the MOTREM model also include traffic data volumes, 

vehicle typology, road geometry and average meteorological conditions [59]. In a reference document on 

MOTREM, the MTQ is careful to specify the limitations of its mathematical model: polluting emissions 

produced by the MOTREM model are at the regional level—since this model includes only the upper hierarchy 

of the road network—and, as such, these emissions do not necessarily take into account phenomena produced at 

the micro-local level.  

Based on the MOTREM model, we constructed three indicators of air pollution: average concentration of CO, 

NOx, and PM2.5 particles in a 200-metres radius from the adjusted centroid of the city block. This exercise was 

performed in two steps. First, we calculated pollutant concentrations for each period. For example, for period t, 

the CO measurement within the buffer zone of 200 m around the centroid adjusted to the city block is calculated 

as follows:  

 

where COit is the measurement of pollutant CO within buffer zone i for period of the day t, ls is the road section 

length included within the buffer zone, COs is the measurement of this pollutant that the model attributes to the 

section, and L is the total length of the network for which modeling within the zone was performed. Next, we 
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carried out a weighted summation according to the number of hours in each period as follows: 

 

where COit represents the measurement of CO pollution for the entire day. 

3.4. Pollution Indicators Obtained through Land-Use Regression 

To implement this technique, we used a data set produced by a team of researchers from McGill University who 

measured NO2 concentrations during the months of August, December and May 2006 at more than 133 locations 

on the Island of Montreal sampled according to population density and proximity to major roads [1]. Next, they 

generated a pollution map encompassing the entire island of Montreal using land-use regression (Crouse, 

Goldberg and Ross, 2009). Based on this map, we simply propose to calculate the average value of NO2 for the 

10,372 city blocks in Montreal whose total population is above 0. 

3.5. Statistical Analyses 

Once all of the indicators are generated for the three types of techniques—density of major roads, mathematical 

modeling and land-use regression—we can see whether these measurements are relatively similar or not based 

on Spearman correlation coefficients. Then, to determine whether environmental inequities exist in relation to 

our four targeted groups (low-income individuals, members of visible minorities, young people and the elderly), 

we suggest four statistical analyses largely used in studies on environmental equity [27, 46, 57, 60]: 1) univariate 

statistics of pollution indicators weighted by the population of each group at the city block scale, 2) a T-test 

between each group and the rest of the population to compare their respective averages in terms of pollution 

indicators (for example between the population under 15 years old and the population over 15 years old), 3) 

Spearman correlation coefficients between proportions of the different groups and pollution indicators, and 

finally 4) a T-test for the extreme quintiles (quintile 1 versus quintile 5 in the percentage of low-income 

individuals, for example). These analyses were conducted in SAS version 9.2 [61].  

4. Results 

4.1 Comparison of the Different Pollution Indicators 

Before analyzing pollution-related environmental inequity for the various population groups under study, it is 

important to begin by succinctly describing the spatial distribution of pollution indicators obtained, then 

measuring their associations. The indicators of proximity to major roads and of NO2 concentrations from land-

use regression were calculated for all the 10,372 city blocks on the Island of Montreal that are populated. As for 

indicators from the MOTREM model (mathematical modeling), they are only available for 9,029 city blocks, 

since this model has not been used for all road sections on the Island of Montreal, particularly local streets. The 

univariate statistics of the seven pollution indicators are reported in Table 5, while their mapping, in quartiles, 

can be found in Figures 2 and 3 in Annex 1 and 2. 
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Table 5. Univariate statistics of pollutant indicators in a 200-metres radius from populated city blocks 

Indicator Abbr. N Mean S.D. P25 P50 P75 

Proximity indicators to major roads 

A. Highways (%) P_Highways 10372 1.07 4.69 0.00 0.00 0.00 

B. Collectors or arterials (%) P_CollExp 10372 17.88 16.52 0.00 16.74 29.16 

C. Local streets (%) P_Local 10372 80.10 18.61 68.28 82.28 100.00 

Pollutant indicators from MOTREM model 

D. CO concentration CO 9029 3343.55 6287.04 876.31 1636.08 3117.30 

E. NOx concentration NOx 9029 363.30 757.07 86.80 157.95 314.01 

F. PM2.5 concentration PM2.5 9029 6.97 14.40 1.62 2.97 5.96 

Pollutant indicator from land-use regression 

G. NO2 concentration  NO2 10372 11.68 3.02 9.69 11.33 13.71 

S.D.: Standard deviation; P25: first quartile; P50: median; P75: third quartile. 

 

Not surprisingly, the city blocks with higher proportions of highways are adjacent to highway sections (Figure 

2.a). The blocks exhibiting the greatest proportions of collector streets are mainly located at boroughs in the city 

core, while those with a high proportion of local streets are much more present at the far ends of the island 

(Figure 2.b and c). As for the mathematical modeling (MOTREM model), the highest concentrations of three 

pollutants (CO, NOx, PM2.5) are situated in city blocks near the highway network and the main roads that cross 

the Island of Montreal running north and south (Figures 3.a to c). Finally, the NO2 indicator generated by land-

use regression is fairly high in areas near an intersection of two or more highways, along highways 40 and 15, 

and in the central boroughs of the Island of Montreal (Ville-Marie, Plateau-Mont-Royal, Rosemont–La Petite 

Patrie, Villeray–Saint-Michel–Parc-Extension) (Figure 3.d). 

To compare the seven indicators, we calculated Spearman correlation coefficients (Table 6). Overall, with the 

exception of correlations between the three indicators from mathematical modeling (CO, NOx, PM2.5) which are 

indeed quite strong (>0.95), all other correlations are moderate or low, but significant (p<0.0001). More 

specifically, first, the correlations between the indicators of proximity to major roads and of pollutants from the 

MOTREM model are moderate (from 0.30 to 0.50 in absolute value). This can be explained by the intrinsic 

construction of the MOTREM model, i.e., the parameters used, namely average speed, number of traffic lanes, 

traffic data volumes and the proportion of heavy vehicles. As a result, the concentrations of these pollutants are 

higher in the city blocks with a higher proportion of highway sections; and, conversely, lower in those with a 

higher proportion of local streets.  

Table 6. Spearman correlation coefficients between the pollution indicators 

 Proximity to major roads MOTREM model Land-use  

regression 

Indicators A B C D E F G 

A P_Highways -- 0.057 -0.322 0.400 0.405 0.407 0.154 

B P_CollExp 0.056 -- -0.947 0.346 0.356 0.370 0.197 

C P_Local -0.321 -0.947 -- -0.458 -0.469 -0.481 -0.223 

D CO 0.407 0.346 -0.458 -- 0.977 0.963 0.205 

E NOx 0.405 0.356 -0.449 0.977 -- 0.995 0.207 

F PM2,5 0.405 0.370 -0.481 0.963 0.995 -- 0.197 

G NO2 0.154 0.197 -0.223 0.205 0.207 0.197 -- 
All the values are significant ( p<0.0001). N=10372 for P_Highways, P_CollExp and P_Local. N=9029 for CO, 

CO, NOx and PM2.5. 
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Second, the correlation coefficients are relatively low (±0.20 in absolute value) between indicators of proximity 

to major roads and from the MOTREM in relation to the land-use regression indicator (NO2). At first glance, one 

might have expected stronger correlations. Two principal factors might explain this result. The first has to do 

with the timeframe for data collection. The MOTREM model uses data on traffic data volumes for a day during 

the fall—a time of year where traffic data volumes are at their highest—while the NO2 data represent an average 

of measurements collected in the summer, winter and spring. It is important to note that major differences in 

these pollutant concentrations were measured in different cities according to changes in seasonal traffic data 

volumes [62] and atmospheric conditions [63]. Hours of sunlight, amount of precipitation, and wind-related 

characteristics are also as many meteorological factors that influence seasonal variations in pollution dispersion 

[64]. The second explanatory factor has to do with geographical scale: the MOTREM model has a regional scope 

while the use of NO2 sensors has a local scope. It should be noted that a number of studies have shown 

significant spatial variability in pollution at the intra-urban level [65, 66] caused by the interaction between 

meteorological factors [67], urban functions and local particularities of traffic [1]. 

Finally, what might explain the weak correlations between NO2 estimates and the indicator of proximity to 

highways (coefficient = 0.154)? As some authors have pointed out [20, 21], the mere presence of a highway 

within a 200-metres radius is insufficient to explain NO2 concentration since highway sections can have different 

traffic volumes. In addition, NO2 pollution is not generated only by highways, but also by other road types. 

4.2 Determining Environmental Inequity 

Having noted these relatively moderate or low correlations between different pollution indicators, we will now 

address our second research question: Can inequities in the exposure of different targeted groups be observed, 

regardless of the indicator used? In other words, does choosing one indicator rather than another have a 

significant effect on results related to the presence of environmental inequity? To address this question, four 

statistical analyses, currently used in studies on environmental equity, have been performed. The first two are 

based on the number of individuals belonging to the targeted groups (weighted univariate statistics and T-Test) 

and the second two, on proportions (Spearman correlation and T-Test on extreme quintiles). 

Weighted univariate statistics for the pollution indicators 

We began by calculating the univariate statistics for the seven indicators obtained at the city block scale by 

weighting them by the number of the total population, then by the number of the four population groups (Table 

7). These statistics clearly show that the pollutant level (for CO, NOx, PM2.5, NO2) and the proportion of 

highways are always higher when weighted by low-income populations and visible minorities. To take an 

example, average and median values for NO2 are respectively 12.86 ppm and 12.78 ppm for the low-income 

population and 12.60 ppm and 12.46 ppm for visible minorities, versus 12.21 ppm and 11.95 ppm for the total 

population. However, the gaps found between the statistics obtained for the total population and for young 

people and the elderly are very limited.  
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The young people 15 years old and under reside in city blocks with a slightly lower concentration of NO2 

(average = 11.99 ppm, median = 11.72 ppm versus 12.21 ppm and 11.95 ppm for the total population), but not 

other pollutants (CO, NOx, PM2.5). In addition, compared to the total population, collector, arteries and 

expressways are less present in their residential area (average and median of 18.07% and 16.48% versus 19.68% 

and 18.12%), while local streets are more present (average and median of 79.84% and 82.36% versus 78.24% 

and 80.64%). The situation also seems to be more complex for people 65 years old and over: they live in 

residential areas with more highways and collector roads/arteries/expressways, and less local streets. However, 

the modeled or measured levels of pollutants (CO, NOx, PM2.5, NO2) show averages similar to those observed for 

the total population in addition to medians that are slightly lower than those for the total population and similar 

to those for people under 15 years old.  

Table 7. Univariate statistics of pollutant indicators weighted by total population and studied groups 

Indicator Weighting Mean P5 P25 P50 P75 P95 

P_Highways Total population 1.03 0.00 0.00 0.00 0.00 6.86 

 Pop014 1.07 0.00 0.00 0.00 0.00 9.17 

 Pop65 1.18 0.00 0.00 0.00 0.00 11.94 

 VisMin 1.33 0.00 0.00 0.00 0.00 15.16 

 LowInc 1.19 0.00 0.00 0.00 0.00 13.89 

P_CollExp Total population 19.68 0.00 0.00 18.12 31.88 49.20 

 Pop014 18.07 0.00 0.00 16.48 30.07 47.74 

 Pop65 21.27 0.00 0.00 19.57 34.07 51.19 

 VisMin 19.78 0.00 0.00 18.50 31.97 49.35 

 LowInc 21.55 0.00 5.90 20.40 33.51 49.86 

P_Local Total population 78.24 43.50 65.52 80.64 100.00 100 

 Pop014 79.84 45.11 67.14 82.36 100.00 100 

 Pop65 76.37 39.19 63.11 78.75 100.00 100 

 VisMin 77.63 42.31 64.43 79.68 100.00 100 

 LowInc 76.06 42.04 63.16 77.72 92.05 100 

CO Total population 3232.51 308.49 923.78 1661.92 3129.09 11424.67 

 Pop014 3289.82 275.35 885.60 1625.74 3177.05 12374.67 

 Pop65 3234.79 274.57 906.97 1623.75 3151.37 11207.69 

 VisMin 3658.79 315.33 949.70 1798.23 3498.00 14138.26 

 LowInc 3317.07 348.56 972.17 1761.20 3281.11 12117.53 

NOx Total population 350.62 35.07 91.02 161.16 317.86 1304.29 

 Pop014 362.31 32.91 87.53 158.99 318.63 1480.43 

 Pop65 350.44 31.21 89.12 158.99 324.80 1351.57 

 VisMin 407.24 37.06 95.98 180.88 356.27 1737.82 

 LowInc 363.07 41.10 96.53 171.94 334.51 1432.35 

PM2.5 Total population 6.79 0.64 1.70 3.02 6.05 26.39 

 Pop014 7.04 0.60 1.62 2.98 6.06 28.81 

 Pop65 6.79 0.59 1.66 2.95 6.26 26.77 

 VisMin 7.99 0.66 1.82 3.37 7.08 33.09 

 LowInc 7.08 0.74 1.82 3.22 6.52 27.74 

NO2 Total population 12.21 8.16 10.22 11.95 14.29 16.97 

 Pop014 11.99 7.96 10.03 11.72 14.03 16.84 

 Pop65 12.05 8.30 10.17 11.69 13.95 16.79 

 VisMin 12.60 8.35 10.53 12.46 14.71 17.22 

 LowInc 12.86 8.71 10.84 12.78 14.88 17.17 

P5= 5th percentile; P25= first quartile; P50= median; P75= third quartile; P95= 95th percentile. Bold typeface 

indicates the strongest values for each statistical measurement; italics, the weakest. 
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Comparison of averages between the groups and the rest of the population (T-test) 

We carried out a T-test to compare the average of the seven indicators weighted by the number of people in each 

group compared to that of the rest of the population (Table 8). The most significant differences can be observed 

for low-income individuals and visible minorities for the four pollutants (CO, NOx, PM2.5, NO2) and the 

proportion of highways, even if these differences are more limited for the latter group. This points to the 

existence of environmental inequities for both population groups. The average NO2 value weighted by the low-

income population is 12.86 ppm versus 11.95 ppm for the population that is not low-income, for a difference of 

0.90 ppm. Although not as substantial, a gap can also be noted for visible minorities, at 0.51 ppm. A situation of 

distributional inequity can thus be observed, but it is very low, particularly for visible minorities. There is no 

significant difference in terms of exposure to the modelled pollutants (CO, NOx and PM2.5) for young people and 

the elderly, although it is worth noting lower and significant exposure for the measured pollutant (NO2). 

Averages for highways are likewise non-significant for these two age groups. In other words, these groups are 

not victims of environmental inequity in line with exposure to pollutants and highway proximity.  

Table 8. Averages of pollutant indicators from the T-test for the four studied groups and the rest of the 

population 

  Highways (%)* 
Collectors, arterials and express 

roads (%) 

  Mean Difference Mean Difference 

Group 1 (G1) Group 2 (G2) G1 G2 Moy P G1 G2 Moy P 

0-14 years old ˃ 15 years old 1.07 1.03 0.04 0.5637 18.07 19.98 -1.91 0.0001 

65 years old and over less than 65years old 1.19 1.00 0.18 0.1291 21.27 19.40 1.87 0.0001 

Visible minorities No visible minorities 1.33 0.93 0.40 0.0001 19.79 19.65 0.14 0.6310 

Low-income population No Low-income population 1.19 0.97 0.22 0.0006 21.55 18.93  2.62 0.0001 

  Local streets (%) CO* 

0-14 years old ˃ 15 years old 79.84 77.95 1.89 0.0001 3289.8 3222.2 67.60 0.2313 

65 years old and over less than 65years old 76.37 78.58 -2.21 0.0001 3234.8 3232.1 2.71 0.2318 

Visible minorities No visible minorities 77.63 78.45 -0.81 0.0093 3658.8 3086.8 572.00 0.0001 

Low-income population No Low-income population 76.07 79.13 -3.06 0.0001 3317.1 3195.9 121.20 0.0001 

  NOx* PM2.5* 

0-14 years old ˃ 15 years old 362.3 348.5 13.79 0.5969 7.04 6.75 0.29 0.9250 

65 years old and over less than 65years old 350.4 350.7 -0.21 0.4836 6.79 6.80 -0.01 0.8177 

Visible minorities No visible minorities 407.2 331.3 75.98 0.0001 7.99 6.38 1.61 0.0001 

Low-income population No Low-income population 363.1 345.2 17.85 0.0001 7.08 6.67 0.41 0.0001 

  NO2     

0-14 years old ˃ 15 years old 11.99 12.25 -0.26 0.0001     

65 years old and over less than 65years old 12.05 12.24 -0.19 0.0007     

Visible minorities No visible minorities 12.60 12.09 0.51 0.0001     

Low-income population No Low-income population 12.86 11.95 0.90 0.0001     

* For the four indicators, the p-value is computed after transformation of the variable due to no-normality. However, the mean for 

each indicator is displayed at the original scale to facilitate interpretation.   

 

Correlation between pollutants and group proportions 

Environmental equity is also often assessed using the share of targeted groups within the total population of 

given spatial units [27, 33, 50, 60]. In this vein, we calculated Spearman correlation coefficients to verify the 
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existence of significant linear relationships between the shares of the four studied groups across the seven 

indicators of pollution exposure (Table 8). 

The first thing to note is that only three correlations are judged to be average: between the share of low-income 

individuals and the network of collector roads, arteries and expressways (0.302) as well as NO2 (0.437), showing 

a situation of environmental inequity; and between the share of young people and NO2 (-0.301), in which case 

the group benefits a much more advantageous situation. Another observation is that correlations are always 

positive and significant between the seven indicators and the percentages of low-income individuals and 

members of visible minorities, suggesting a situation of inequity, which is nevertheless not striking since the 

values of the correlation coefficients are mostly low. 

As for the statistical measurements calculated based on the number of people within the studied groups, the 

situation is more advantageous for young people and the elderly in light of the Spearman coefficients. For those 

65 years old and over, only one correlation is significant and, additionally, it is negative (with NO2: -0.065). In 

addition, for the share of people under 15 years old, correlations are all negative and significant with the four 

types of pollutants and the road network excluding highways.  

Table 9. Spearman coefficients between the pollution indicators and the presence of different groups by city 

block  

Group 

Proximity to major roads MOTREM model Land-use 

regression 

P_Highways P_CollExp P_Local CO NOx PM2,5 NO2 

0-14 years old (%) 0.011 -0.262 0.241 -0.069 -0.055 -0.051 -0.301 
65 years old and over (%) 0.023 -0.009 0.004 -0.031 -0.017 -0.014 -0.065 
Visible minorities (%) 0.083 0.117 -0.122 0.094 0.128 0.139 0.134 

Low-income population (%) 0.057 0.302 -0.293 0.118 0.144 0.151 0.437 

Bold: significant at the level of P<0.0001. N=10372 for P_Highways, P_CollExp and P_Local   

N=9029 for CO, NOx and PM2.5. 

 

Comparison of averages between the extreme quintiles of group proportions 

Although the Spearman correlations are significant and globally moderate, associations between the shares of the 

different groups and pollution indicators may not be linear. Consequently, we suggest one final analysis aiming 

to compare the averages of extreme quintiles based on a T-Test, an exercise conducted, among others, by 

Kingham et al. [44] and Briggs et al. [46]. The output of this analysis, shown in Table 10, further highlights 

environmental inequity for the low-income population and visible minorities. For example, the NO2 average for 

the last quintile in the percentage of low-income individuals is 13.27 ppm versus 9.84 ppm for the first quintile, 

representing a difference of -3.43 ppm in exposure to this pollutant. In comparison, the gap between NO2 

averages weighted by the number of low-income people and those not belonging to this category was only 0.90 

ppm (Table 8). The results are similar for the group of visible minorities and the average for the pollutant NOx—

which is almost twice as low in the first quintile as in the last (277.7 g versus 468.0 g; difference of -190.3 g)—

and the average for the pollutant CO, for which the discrepancy between extreme quintiles is -1455 g. 



 
16 

Finally, as with the three preceding analyses, it appears that elderly people are not subject to inequity: only one 

T-test is significant, namely the one for NO2. Furthermore, the value for pollution is lower in the last quintile 

than in the first. 

The situation appears somewhat complex for individuals under 15 years old. One positive point to note is that 

the averages for proportions of collector arteries and the pollutant NO2 are significantly lower in the last quintile, 

and higher for the proportion of local streets. In other words, city blocks with a strong concentration of young 

people show lower levels of NO2 pollution and a lower presence of superior road networks other than highway. 

However, the results appear contradictory for two of the modeled pollutants (CO and NOx): averages are higher 

for the last quintile, which represents an inverse relationship compared to the one observed with the Spearman 

coefficients, which were slightly negative. This can be attributed to the fact that the MOTREM model did not 

estimate pollution for roughly 1,000 city blocks—located mainly in the western suburbs of Montreal where 

proportions of young people are very high—since these areas almost exclusively contain a network of local 

streets with low traffic data volumes. If values had been assigned to these blocks, they would probably have been 

very low and would therefore have contributed to lowering or inverting the discrepancy between extreme 

quintiles. 

Table 10. Comparison of values for pollutant indicators associated with the minimal and maximal quintiles of 

the studied groups 

  Highways (%)* 
Collectors, arterials and expressways 

(%) 

  Mean Difference Mean Difference 

Quintile 1 Quintile 5 Q1 Q5 Moy P Q1 Q5 Moy P 

0-14 years old (%) ˃ 15 years old (%) 0.97 1.13 -0.16 0.3261 24.69 12.49 12.19 0.0001 

65 years old and over (%) less than 65years old (%) 1.07 1.50 -0.44 0.0046 19.90 19.85 0.05 0.9247 

Visible minorities (%) No visible minorities (%) 0.51 1.58 -1.06 0.0001 14.77 20.04 -5.27 0.0001 

Low income pop. (%) No low income pop. (%) 0.84 1.25 -0.41 0.0001 10.54 23.77 -13.23 0.0001 

  Local streets (%) CO* 

0-14 years old (%) ˃ 15 years old (%) 73.24 85.55 -12.30 0.0001 2964.7 3501.0 -536.4 0.0001 

65 years old and over (%) less than 65years old (%) 77.76 77.45 0.31 0.6080 3395.5 3475.2 -79.72 0.4608 

Visible minorities (%) No visible minorities (%) 84.02 76.96 7.06 0.0001 2693.9 4149.0 -1455 0.0001 

Low income pop. (%) No low income pop. (%) 87.86 73.68 14.18 0.0001 3229.3 3330.3 -101.0 0.0001 

  NOx* PM2.5* 

0-14 years old (%) ˃ 15 years old (%) 301.8 397.8 -95.96 0.0001 5.72 7.65 -1.93 0.1752 

65 years old and over (%) less than 65years old (%) 359.7 383.5 -23.73 0.9212 6.85 7.26 -0.41 0.9293 

Visible minorities (%) No visible minorities (%) 277.7 468.0 -190.3 0.0001 5.17 9.33 -4.16 0.0001 

Low income pop. (%) No low income pop. (%) 350.8 365.0 -14.19 0.0001 6.38 7.23 -0.85 0.0001 

  NO2     

0-14 years old (%) ˃ 15 years old (%) 13.06 10.63 2.42 0.0001     

65 years old and over (%) less than 65years old (%) 11.97 11.63 0.34 0.0011     

Visible minorities (%) No visible minorities (%) 10.96 12.48 -1.53 0.0001     

Low income pop. (%) No low income pop. (%) 9.84 13.27 -3.43 0.0001     

* For the four indicators, the P-value is computed after transformation of the variable due to no-normality. However, the mean for each 

indicator is displayed at the original scale to facilitate interpretation.   
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5. Discussion 

Our results regarding environmental equity for four population groups in Montreal deemed to be vulnerable to 

air pollution essentially corroborate those of past studies. First, we demonstrated over-exposure to pollutants for 

low-income individuals and, to a lesser extent, for visible minorities. Secondly, as in other studies [22, 24, 33], 

we did not find a situation of inequity for young people and the elderly, although we did not introduce control 

variables, for example deprivation. Such results for these four groups can largely be explained by the urban 

landscape and the social geography of Montreal. 

To begin with, it is not surprising that low-income individuals are more exposed to pollutants since they are 

concentrated in Montreal’s central neighborhoods [68]. These spaces are above all characterized by greater 

residential density, the diversity of urban functions, higher concentrations of collector roads, arteries, 

expressways, and highways that link together the downtown area; hence higher traffic data volumes. All these 

factors lead to higher pollution levels, whether modeled or measured.  

Visible minorities on the Island of Montreal for their part are victims of over-exposure to pollutants, although 

this exposure remains much weaker than for low-income individuals. This corroborates two recent Canadian 

studies in environmental equity, namely those of Buzzelli and Jerrett [30, 31] on air quality in Hamilton and 

Toronto as well as that of Apparicio et al. [60] on the accessibility of parks in Montreal. Moreover, the lower 

degree of ethnic residential segregation in large Canadian cities compared to their American counterparts might 

well explain these significantly lower levels of environmental inequity in line with pollution.  

Young people under 15 years old appear to reside in urban environments with more local streets, less high-level 

roads, and lower pollution levels, especially as reflected by NO2 measurements. Since the 1950s, the presence of 

young people under 15 years old has been dropping in central boroughs while it has considerably increased in 

suburbs on the outskirts of the Island of Montreal [60]. These areas are characterized by low urban density and 

low functional diversity—the vast majority of homes being single-family houses—along with a roadway 

network organized so as to serve residential neighborhoods, hence minimizing the presence of major roads. 

Finally, individuals 65 years old and over residing on the Island of Montreal do not appear to be faced with 

environmental inequity either. This is not surprising since a recent study on the evolving distribution of elderly 

people in Montreal between 1981 and 2006 has demonstrated that this group has become decentralized [69]. In 

other words, the elderly are increasingly dispersed across the island and, in particular, they are increasingly 

present in the inner suburbs. 

Environmental inequity or pollutant exposure inequity? 

One of the main issues in environmental equity is to assess the health risk associated with living in a residential 

area with higher concentrations of air pollutants [11]. The objective then becomes to establish whether the 

targeted groups may be exposed to pollutant concentrations that can affect health [70]. The World Health 

Organization (WHO) has determined that annual concentrations of NO2 should not exceed 40 μg/m
-3

 [71]. The 

average concentration of this pollutant is 13.27 ppm
2
 in city blocks with high concentrations of low-income 



 
18 

households (last quintile), which equates to 24.68 μg/m
-3

, a level much lower than the threshold set by the WHO.  

This finding nuances the observation of environmental inequity in connection with low-income households in 

Montreal. Although this group does live in more polluted areas than the rest of the population, the concentration 

is deemed ‘not harmful’ to health according to the WHO. In addition, low-income households that reside near 

the downtown area can benefit from certain amenities related to their location. Apparicio and Séguin [72] have 

demonstrated that central neighbourhoods, especially deprived ones, have better access to services and 

equipment compared to those in the periphery of the Island of Montreal. Moreover, residential proximity to 

major roads sometimes offers better access to public transportation networks, hence improving mobility for 

households without vehicles [73]. However, it should also be kept in mind that, owing to their socio-economic 

position and hence their limited mobility, low-income individuals have fewer resources to be able to protect 

themselves from high concentrations of pollutants in their areas of residence [74]. Conversely, more wealthy 

households that reside in significantly more polluted environments can more easily get out of the city, for 

example by acquiring a second house. It therefore appears important to consider several elements relating to the 

urban environment before making an observation on environmental inequity for a group within the population. 

Indeed, studies in environmental equity, including this one, have tended to focus on one single element in the 

urban environment, a fact that has recently come under criticism [11, 45].  

Comparability of the three techniques used 

We have shown that average or weak correlations exist between the three techniques used (Spearman 

coefficients between 0.15 and 0.50 in absolute value). At first glance, the most surprising element is the 

relatively weak correlation between the measured pollutant (NO2) and the modeled pollutants (CO, NOx, PM2.5) 

(± 0.20). Because of the typical co-localization of NO2 with the pollutants PM and CO, one might have expected 

higher correlation coefficients. This situation can be explained in part by the varying spatial scale of the two 

approaches: one is at the regional level and takes into account the characteristics of the upper road network, 

while the other is more local and takes into account characteristics of the road network, but also of the built 

environment and population density.  

What can be deduced from these differences in the diagnosis of environmental equity? It should be noted that the 

four statistical analyses here performed have all shown a much stronger situation of inequity for low-income 

individuals with regard to NO2 exposure than with regard to pollutants modeled at a more regional scale. Indeed, 

the correlation between this group and NO2 is three times higher compared to the modeled pollutants (0.44 

versus values below or equal to 0.15). In a context where the literature on environmental equity seeks to measure 

health consequences associated with pollutant exposure, the variable of exposure must be as accurate as possible 

according to the scale of analysis [75]. The land-use regression method—which uses several elements from the 

built environment and urban functions, at a fine scale, to predict pollutant levels—therefore appears more 

appropriate for studies of environmental equity. This is particularly true in light of the existence of micro-spaces 

of poverty in Montreal [76]. 
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6. Limits of the Study 

Operationalizing these techniques has shown the approximate level of pollutants for a period of time t, i.e., their 

concentration [70]. It is important, however, to distinguish between the notions of pollutant concentration and 

exposure. Exposure has to do with the period of time an individual spends in an environment and the quantity of 

pollutants to which the person is exposed [70]. This makes it complex to measure individuals’ actual exposure to 

pollutants, since it is difficult to ascertain the time period during which they remained at their residence [20, 21]. 

In addition, this analysis only takes into account certain pollutants, while individuals can also be exposed to 

other pollution sources [1].  

7. Conclusion  

The results of this analysis corroborate those of a number of studies in environmental equity: low-income 

households do tend to reside in more polluted areas. Yet while a situation of distributional inequity is associated 

with pollution in Montreal, it would be hasty to conclude that this represents a situation of flagrant 

environmental inequity that is highly harmful to the health of low-income populations. Indeed, the measured 

NO2 concentrations are well below the thresholds set by the WHO. 

We have also shown that diagnoses of environmental equity relating to air pollution vary from one technique to 

another. According to numerous authors [75, 77], it is primordial to accurately measure a studied phenomenon in 

order to properly assess health risks for targeted groups. Although in the context of this study, associations were 

stronger with the land-use regression method, it is difficult for us to conclude that this is the most appropriate 

technique irrespective of the data, the scale of analysis, and the context of a given study. However, our results do 

clearly show that the combined use of different approaches to measure pollutants offers a way to refine 

diagnoses of environmental equity and air quality. 
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Figure 2. The three indicators of proximity to major roads calculated at the city block scale, Island of Montreal 
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Annex 2 

 

Figure 3. The three indicators of pollution modeled or measured at the city block scale, Island of Montreal 

 


