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ABSTRACT 

This paper proposes a novel approach to model aggregated freight demand in urban 

environments. The analytical models proposed improve current techniques by incorporating 

the time-dependent tour-based behavior of freight vehicles. Furthermore, an origin destination 

synthesis model is proposed to overcome the need of expensive surveys to assess freight 

demand patterns by incorporating data from secondary sources. Two sets of formulations are 

proposed, the first one is the time-dependent entropy maximization (TD-EM) problem that 

takes advantage of TD freight trip generation, while the second one is a time-dependent origin 

destination synthesis (TD-ODS) that incorporates TD traffic counts to produce an OD matrix. 

These formulations are tested using a simplified experimental setup. TD-EM model obtains 

the best performance, followed by the TD-ODS and the Static-EM models. 

 

Keywords: demand modeling, time-dependence, urban freight tours, origin-destination synthesis 

1. INTRODUCTION 

Urban transportation systems are basic components of cities’ social, economic and physical 

structure. The design and planning of these systems have been traditionally aimed at 

improving mobility, modifying growth patterns and enhancing economic development; though 

in more recent years they have been redirected to also serve other national and community 

objectives (e.g., social equity, sustainability) (Meyer and Miller, 1984). To make this possible, 

urban planners count on a number of tools to anticipate the consequences of alternative 

actions. In particular, transportation demand models play an important role to support 

planning by providing a simplified representation of a real world problem. In the classic 

transport model, the starting point is to consider a zoning and network system, and the 

collection of planning, calibration and validation data. The data is used to estimate the total 

number of trips produced and attracted by each zone; these trips are then allocated to 

particular destinations under the form of an OD matrix. Next steps include the mode choice 

for the trips and the corresponding traffic assignment (Ortúzar and Willumsen, 2001). In the 

case of freight, the complexity of interacting decision makers, the availability of suitable data, 

and the data processing requirements (among others), represent a threat for applying the 
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classical modeling approach. These issues faced by freight transportation systems have 

unveiled the necessity of new freight urban demand models.  

 

In practice, paradigms used in passenger transportation have been adapted to estimate 

freight related trips. However this correspondence is problematic; one of the reasons is that 

freight demand has different dimensions: it can be calculated in trips (loaded and empties), 

commodities or value. Therefore, two major interrelated modeling platforms are often used: 

commodity based models and trip based models. This distinction is important because while 

commodity flows are the consequence of an economic interaction between two entities or 

zones, transportation of goods is a derived demand that might not follow the same 

geographical pattern (Ogden, 1978). Freight models can incorporate this consideration by 

studying tour-based behavior. 

 

Given the complexity of tour behavior, researchers have proposed a number of techniques to 

model freight tours. These formulations can be roughly classified into simulation, hybrid, and 

analytical models. Among the simulation models, one could list Boerkamps and van 

Binsbergen (1999), Liedtke and Schepperle (2004), Stefan et al. (2005), Liedtke (2006), Hunt 

and Stefan (2007), Routhier and Toilier (2007), and Liedtke (2009). Stefan et al. (2005) and 

Hunt and Stefan (2007) propose an agent-based microsimulation to model commercial 

vehicles in Calgary, Canada. In their model, tours are constructed using a “rubber-banding” 

approach, and a fleet-allocator simulation model. Routhier and Toilier (2007) develop a 

simulation model (FRETURB) to reproduce tour patterns observed on an area of study. 

These patterns are obtained from a large scale urban freight survey that is regularly 

conducted in France. Their model has been successfully applied to a number of French 

cities. Boerkamps and van Binsbergen (1999) develop the GoodTrip to study urban freight 

distribution in Groningen, The Netherlands. The GoodTrip model estimates commodity flows 

according to the spatial distribution of activities, and convert these flows to vehicle tours 

using micro-simulations based on the origin’s activity type. Liedtke and Schepperle (2004) 

and Liedtke (2009) propose an actor-based approach to model freight movements. The 

model proposed (InterLOG) generates tour-based truck trips based on estimated commodity 

flows between companies and a market simulation module. Although the model was 

originally designed for intercity freight trips, its structure may be amenable for urban freight 

tours. 

 

However, although simulation models have proven very useful to describe existing 

conditions, an added analytical component provides a robust foundation for modeling 

purposes, particularly, if the analytical component is supported by proper behavioral and/or 

economic axioms (Holguín Veras et al., 2012). Formulations that combine analytical models 

and simulations are hybrids. There is a significant number of them (Taniguchi and 

Thompson, 2002; van Duin et al., 2007; Wisetjindawat et al., 2007; Donnelly, 2010). For 

instance, Taniguchi and Thompson (2002) propose a model that consists of a vehicle routing 

problem and a dynamic traffic simulation, where the demand for each carrier is randomly 

simulated. Wisetjindawat et al. (2007) use a commodity-based model to estimate production, 

consumption, and distribution in Tokyo, and then convert the commodity flows into vehicle 

flows using a fleet allocator simulation, and subsequent vehicle routing simulations. van Duin 
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et al. (2007) studies auctions in the spot market, and they affect tours structure. A simulation 

model assigns the loads from the spot market to each carrier, and thereby determines which 

tours are taking place. Donnelly (2007) uses a simulation model to fuse data from different 

sources and obtain aggregate commodity flows. Deliveries are then consolidated using a 

shipment assignment module based on Monte Carlo simulations and a vehicle routing 

algorithm. 

 

Other models determine freight tours using analytical procedures based on behavioral, 

economic or statistical axioms. For instance, Holguín-Veras (2000), Thorson (2005), and Xu 

and Holguín-Veras (2008) use economic principles to find the commodity and freight-vehicle 

flows that meet freight market equilibrium conditions. These models use a bi-level 

formulation that relates the suppliers’ decisions (e.g., production level, delivery routes and 

profit margin) to a market competition environment. Given the combinatorial nature of these 

formulations, solving them is computationally challenging, and only small instances can be 

solved at optimality using state-of-the-art algorithms. Thorson (2005), and Xu and Holguín-

Veras (2008) assess the performance of their models with satisfactory results for mid-size 

problems. A general formulation for this family of models is presented in Holguín-Veras et al. 

(2012) and consists of a spatial price equilibrium model that computes the corresponding 

commodity flows and vehicle-trips for the case integrated shipper-carrier operations. This 

formulation is successfully solved with the assistance of heuristic procedures. 

 

As shown in the previous review, in order to develop efficient transportation models, planning 

agencies need extensive datasets. These data requirements are in general very expensive 

and simulations that do not use a significant amount of data as input are simply not useful for 

planning and decision-making processes. Therefore, few metropolitan planning organizations 

use exclusive models for freight. Yet, new models use traffic counts to bypass the need of 

expensive OD flows surveys and open the option to introduce time-dependent effects. This 

paper proposes an enhanced freight trip distribution model and a freight origin-destination 

synthesis model. These analytical models improve current techniques by including the time-

dependent (TD) tour-based behavior of freight vehicles and incorporating data from 

secondary sources (e.g., traffic counts). 

 

This document is comprised of three sections in addition to this introduction. Section 2 

presents the research approach and basic definitions. Section 3 discusses the results from 

the experiments and Section 4 presents the conclusions from this research.  

 

2. THEORETICAL BACKGROUND AND RESEARCH 
APPROACH 

This chapter presents the overall approach of the models proposed and some basic 

definitions including notation. Figure 1 presents the general structure, and the different 

components of the model. 
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As shown, the main inputs are the network topology and characteristics, the zonal economic 

data (used to estimate freight trip generation), and traffic volumes on links. The first step is 

the process of tour sequence generation that creates the set of input tours used by the TD-

EM and TD-ODS models. These tour sequences can be obtained directly from GPS data or 

can be estimated using discrete choice models, see (Wang and Holguín-Veras, 2008). 

 

Using the output from the tour sequence generation, a second process produces the tour-

centroid incidence matrix that indicates which TAZs are visited by each tour, and the 

cumulative cost vector for each tour. These vectors are highly dependent on the links travel 

time and the handling time at each zone; these impedance measures may vary according to 

the time of the day. The resulting incidence matrix is crucial because it defines the time 

interval within which a tour reaches each centroid, and therefore determines which 

combinations of tours meet time-dependent demand constraints. These demand constraints 

are determined using the third component, which provides freight trip generation for each 

TAZ and each time interval. The main component is the TD-EM model that finds the most 

likely meso states (tour flows), given the demands and cost constraints, using the results 

from the previous components as inputs. In the case of ODS, a traffic assignment module is 

included to obtain link traffic volumes estimates and compare them to the counts. This traffic 

assignment module may use an all or nothing algorithm or a multi-path algorithm (for each 

Inputs 

Network Topology 

and Characteristics 
  

Economic 

Information 

  

Time-Dependent Entropy Maximization Program 
  

Tour Sequence 

Generation 
  Intermediary 

components 

Tour Incidence 

Matrices & Cost 
  

Main Component 

Tour flows 
  

Outputs 

Freight Trip 

Generation 
  

Link Traffic 

Counts 

Traffic 

Assignment 

Note: Link traffic counts and traffic assignment modules are used in the time-dependent ODS, but not in the regular 

time-dependent tour-based formulation 

Figure 1: Model Components 
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interval) to estimate the proportion ka
mp  of flow assigned to each link studied. The outputs 

from the overall model are tour flows that could be translated if desired into an OD matrix. 

2.1. Basic Definitions 

It is important to start by explaining the distinction between the interrelated concepts of tour 

sequence and tour flows. A tour sequence is an ordered listing of the nodes that are visited 

as part of a generic tour m: Sm=[n1,n2,…,nm]; while the tour flow xm represents the number of 

vehicles that traverse the node sequence that defines the tour m. This distinction is important 

because, since this is an aggregate model that focuses on depicting travel to/from 

transportation analysis zones (TAZs), it is very likely that numerous vehicles follow the same 

sequence, as the nodes are defined in terms of geographic areas (the TAZs) containing 

significant numbers of commercial establishments. 

 

Studying the evolution of freight vehicle traffic over the day provides invaluable insight for 

travel demand management strategies and the assessment of urban freight policies. To this 

effect, the model considers the time-dependent effects on: (1) tour starting time; and (2) 

arrival/departure to/from each TAZ. The time domain is discretized in ∆ intervals, and the 

tour’s starting time is handled by replicating each tour ∆ times; while the arrival/departure 

times to/from centroids are estimated using the tour sequences, the topology of the network, 

and the average travel and handling times. For each tour m a binary variable 
k
img  indicates if 

the tour reaches TAZ i during the interval k, as shown in the following equation: 

 



 


otherwise,0

)(*)1()1(,1 kddkif
g

i
mk

im


      (1) 

Where:  

)(di
m  :The elapsed total time of tour m that started at interval d when it arrives to 

TAZ i (this includes handling time in the previously visited centroids). 
 

A similar procedure is followed to mark the time interval where the tours leave the TAZs. The 

only difference is that the elapsed time includes the handling times at all the preceding TAZs 

(except the base). The corresponding binary variable is 
k
im , is: 



 


otherwise,0

)(*)1()1(,1 khddkif i
i
mk

im


      (2) 

 

Where:  

hi : Handling time at the TAZ i. 

To account for the temporal effects using link volumes, a binary variable 
k

am  indicates if tour 

m reaches TAZ i during the interval k: 



 


otherwise,

kΔh(d)η)*Δ(d)Δ(kif, i
i
mk

am 0

111
       (3) 

Where:  

τa : Travel time of link a. 
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2.2. Notation 

Sets 

K : Number of time intervals; 

M : Total number of possible tours in the system; 

N : Total number of nodes in the system; 

W : System entropy that represents the number of ways of distributing freigh 

vehicle tour flows; 

X : Total number of freight vehicle tour flows in the network. 

Variables 

d
mx

 
: Tour flow following tour structure m starting at time interval d; 

d   : Time interval of tour m’s start time; 

 k : Time interval when tour m arrives to the tail node of link a ; 
k
iO

 
: Trip production of zone i during time interval k; 

k
iD

 
: Trip attraction of zone i during time interval k; 

k
img  : Binary variable equal to 1 if tour m reaches zone i during time interval k, 

otherwise zero; 
k
im  : Binary variable equal to 1 if tour m leaves zone i during time interval k, 

otherwise zero; 
k
am  : Binary variable equal to 1 if tour m reaches link a during interval k, otherwise 

zero;  
k
i  

: Lagrange multiplier associated with the zone i's trips attraction at time k 

constraint; 

 β    : Lagrange multiplier associated with total impedance constraint; 

xij : Number of vehicles traveling from zone i to zone j; 

ψ
k
ijm  : A binary variable equal to 1 if OD pair ij is in tour m during interval k, 

otherwise 0; 
d
mx

XC
 

: Combination of selecting the number of tour flow d
mx  from X; 

e(x) : Total squared error between traffic volumes estimates and traffic counts; 

ε : Aspiration level of the error of traffic volumes estimates in the ε –constraint 

method. 

Parameters 

C : Total impedance in the network; 

cm : Impedance of tour m; 
k
i

 
: Lagrange multiplier associated with zone i's trips production at time k 

constraint; 

ρ : Parameter to create experimental flows; 
ka
mp  : The proportion of trips of tour m є M at time interval k traversing link a є A; 
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2.3. Mathematical Formulations 

Two formulations are proposed for the main component, the first one is the time-dependent 

entropy maximization (TD-EM) problem that takes advantage of TD freight trip generation, 

while the second one is a time-dependent ODS (TD-ODS) that incorporates TD traffic counts 

to reproduce flows. 

More specifically, the TD-EM formulation obtains the most likely meso states (i.e., TD tour 

flows) comprised of micro states (i.e., TD freight vehicle journeys), that are consistent with a 

set of macro states (i.e., TD trip productions/trip attractions and total tour impedance), as 

shown in Program TD-EM. 

 

PROGRAM TD-EM 

Maximize



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The TD-ODS is a bi-objective optimization problem, in which the first objective is an entropy 

maximization (EM) formulation that finds the most likely flow distribution satisfying a set of 

constraints (i.e., demand and total impedance of the network); while the second objective 

minimizes the square differences between observed and estimated link flows, as shown in 

Program TD-ODS. The resulting Pareto frontier reveals the tradeoffs between EM and 

minimizing traffic estimation’s error. 
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3. EXPERIMENTAL SETUP 

The effectiveness of the models is assessed using a test case. For the TD-EM model, the 

inputs are the demand in truck trips for each time interval and TAZ, the link-node incidence 

matrix characterizing the network, and the sample set of feasible tour sequences. The 

expected output are the flows for the various tours, which are also defined by their starting 

times. For the TD-ODS, the inputs also include traffic volumes for each time interval and link, 

and trips destinations are provided in daily terms.  

 

The experiment uses an artificial network with hypothetical flows that were created by the 

author. The test values are referred to in this paper as “experimental,” while the estimates 

produced by the models are termed “estimated.” Figure 2 shows the test case with five TAZ 

where the nodes represent the centroids. Although in reality the zones would be connected 

by a set of directional links, for simplicity, the TAZs are assumed to be connected by super-

links that represent the shortest path—or any other suitable measure of network 

impedance—between the centroids. In the figureFigure 2, the travel time (t) between zones 

is indicated on the edges, and the handling time (h) is indicated on the centroids. 

 

The tour sequences (twelve different sequences for each starting time) and the tour flows are 

designed to have significant overlap, so that each TAZ is visited by a number of different 

tours. To simulate real conditions, the tour impedance cannot exceed twelve hours. The day 

is discretized into three time intervals. The experimental flows were created using an 

exponential impedance function, so that the flow decreases with the impedance of the tour to 

reproduce the tour patterns found in (Holguín-Veras and Thorson, 2000; Wang and Holguín-

Veras, 2009). The flows can therefore be expressed as follows: 

MmcUx mmm  )exp()exp( 
      (15) 

As shown, the deterrence function depends on the disutility Um, which is the product of a 

friction factor and the impedance of tour m. Taking the derivative of the disutility function with 

respect to cm , one finds that the parameter is the marginal disutility of travel: 

Mm
c

c

c

U

m

m

m

m 










 )(

      (16) 

The results show that the parameter of the entropy model is related to the flow patterns. In 

fact, in the case of the gravity model that uses a simple OD matrix, the average of the 

inverse of the OD impedances is used as an estimator of the parameter of the gravity model 

(Ortúzar and Willumsen, 2001). Based on this result, the authors assumed that the 
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parameter of the tour flow model could be approximated by the equal to the inverse of the 

average tour impedance (7.22 hours), which leads to 
average
tour =0.138. 

To split the (daily) experimental flows among different time intervals the authors assumed 

that the temporal split of the flows were 45%, 35%, and 20%, for the first, second, and third 

interval, respectively. The tour sequences and flows are depicted in Figure 3. 

 

 
 

 

As shown, every tour sequence has a different flow ranging from 216 to 545 trucks, while 

total tour impedance ranges from 4.4 hours to 11.1 hours. Some non-optimal tours (i.e., tours 

7 and 9) are included to represent the more general scenario in which market constraints, 

such as delivery time windows, might affect the optimality of the actual routing. 

 

t=0.5 
 

h=2.8 

t=0.3 t=1.3 

t=0.9 

t=1.4 

t=0.5 

t=2.5 

t=1.3 

t=1.8 h=1.1 

h=0.8 

h=2.2 t=1.8 

h=0.5 

Figure 2: Artificial Network with Travel and Handling Impedances (in Hours) 
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Using the tour flows and the binary variables
k
img  and 

k
im , the trip productions and attractions 

for each zone and time interval are generated. However, since the time intervals are 

relatively long, some tour flows arrive and leave the TAZs in the same time interval; therefore 

it is necessary to drop some trip production constraints to avoid the degeneracy caused by 

redundant constraints. In contrast, in the S-EM and the TD-ODS cases, attractions and 

productions are equal, so only one set of constraints is used. The productions and attractions 

resulting from the experimental setting are shown in Table 1. The TD productions and 

attractions are used as inputs for the TD-EM, and the static attractions by the S-EM and the 

Figure 3: Tours Sequences and Flows 
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TD-ODS. Computing the TD trip productions and attractions is crucial because they are one 

of the factors that determine the time-dependent nature of the TD-EM problem. 

 
Table 1: Experimental Trip Generation Values 

TAZ K=1 K=2 K=3 K=1 K=2 K=3

1 945 737 423 945 737 423 2105

2 993 871 519 993 871 519 2426*

3 1414 1102 630 1279 1132 674 3146*

4 1283 1001 571 1076 1046 641 2855*

5 1754 1368 781 1626 1396 824 3903*

Experimental TD-

Productions

Experimental TD-

Attractions
Experimental S-Productions/ S-

Attractions (daily)

Notes: (*) These values do not match the summation of the TD-EM inputs because 

some tours starting in K=3 do not finish the tour in the same day  
Similarly, Table 2 presents the TD traffic counts used for inputs in the TD-ODS model. 

 
Table 2: Experimental Time-Dependent Traffic Counts 

K=1 K=2 K=3

1 - 2 171 230 153

1 - 3 0 135 105

1 - 4 0 110 86

1 - 5 304 365 236

2 - 1 153 119 69

2 - 3 614 479 274

2 - 4 0 97 76

2 - 5 226 176 100

3 - 1 128 100 57

3 - 2 226 176 100

3 - 4 680 530 303

3 - 5 380 296 170

4 - 1 322 251 144

4 - 3 245 191 109

4 - 5 716 559 318

5 - 1 342 267 153

5 - 2 596 465 266

5 - 3 420 327 186

5 - 4 396 309 176

Traffic Counts-

Time IntervalSuperlink

 

4. RESULTS 

4.1. TD-EM 

After setting up the experimental case, both the S-EM (Wang and Holguín-Veras, 2009) and 

the TD-EM models were calibrated using minos solver in AMPL. The S-EM took 0.012 
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seconds to complete the computations, while the TD-EM took 0.078 seconds. Table 3 shows 

the observed and estimated flows using the S-EM and the TD-EM models. 

 
Table 3: Tour Flow Estimates 

S-EM

Daily d=1 d=2 d=3 Daily d=1 d=2 d=3 Daily

1 1 - 2 - 3 - 4 7.0 381 171 133 77 217 171.0 133.0 77.0 381.0

2 1 - 5 - 4 - 0 7.9 336 151 118 67 399 150.9 117.8 67.4 336.0

3 2 - 3 - 4 - 5 7.3 365 164 128 73 523 164.0 128.1 72.9 365.0

4 2 - 1 - 5 - 0 7.8 341 153 119 69 160 153.1 119.2 68.6 341.0

5 4 - 5 - 2 - 3 7.9 336 151 118 67 390 151.0 117.9 67.1 336.0

6 4 - 5 - 3 - 0 6.1 431 194 151 86 279 193.9 151.2 85.9 431.0

7 4 - 5 - 1 - 2 11.1 216 97 76 43 282 97.1 76.0 43.1 216.2

8 4 - 5 - 1 - 0 10.2 245 110 86 49 130 109.9 86.0 48.9 244.8

9 5 - 2 - 3 - 1 9.1 285 128 100 57 676 128.0 100.0 57.0 285.0

10 5 - 4 - 3 - 0 4.4 545 245 191 109 638 245.2 191.1 108.7 545.0

11 3 - 2 - 5 - 0 5.0 502 226 176 100 182 225.9 175.8 100.4 502.0

12 3 - 5 - 1 - 0 8.7 301 135 105 61 244 135.0 105.0 61.0 301.0

178.89

Estimated Flows
Experimental FlowsTour 

Sequence
TAZs visited

0.17Root Mean Squared Error (RMSE)

Tour 

Impedance 

(in hours)

TD-EM

 

The tour flows estimated using TD-EM match very closely the experimental flows. Although 

the S-EM does provide fairly good estimates, the root mean square error (RMSE) clearly 

indicates that the TD-EM model does a better job in replicating the experimental values (0.17 

versus 178.89). This is a result of the incorporation of time-dependent effects, which not only 

provides additional constraints related to time; but also enables to differentiate between 

production and attraction constraints. While the S-EM requires flow conservation over the 

period of study (total productions=total attractions), the TD-EM allows tours to start in one 

interval and finish in another one. In terms of time-dependency, the flows estimated by the 

TD-EM match the input values (45%, 35%, and 20%), which shows that the model captures 

the temporal aspects of tour flows.  

 

The Lagrange multipliers associated with the various constraints are interesting outputs. 

Table 4 shows the Lagrange multipliers for both the static and the time-dependent scenario. 

For the time-dependent scenario, each TAZ has trips attractions Lagrange multiplier (αi ᵏ) for 

each time interval, trips productions Lagrange multiplier (λi ᵏ) for time intervals and TAZs 
where productions differ from attractions, and for the total impedance (  ). 
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Table 4: Lagrange Multipliers for Trip Attraction Constraints 

L.Mult. k=1 k=2 k=3 L.Mult. k=1 k=2 k=3 Day

α₁ᵏ 3.055 2.927 2.659 λ₁ᵏ n/a n/a n/a 3.358

α₂ᵏ -0.002 0.000 0.001 λ₂ᵏ n/a n/a n/a 1.233

α₃ᵏ 8.638 5.577 2.645 λ₃ᵏ -5.581 -2.649 0.008 2.103

α₄ᵏ 0.000 0.001 0.004 λ₄ᵏ -0.003 0.000 -0.007 2.198

α₅ᵏ 8.641 5.584 2.659 λ₅ᵏ -5.586 -2.653 -0.014 4.411

β -0.498

Lagrange Multipliers associated to total impedance

Lagrange Multipliers associated to TAZ by Time Interval

-0.138

S-EM 

ModelTD ProductionsTD Attractions

TD-EM Model

 
 

As shown, the values of αiᵏ  range from -0.002 to 3.055 for the time-dependent case, and 

from 1.212 to 4.350 for the static case. In the case of λi ᵏ, TAZs 1 and 2 do not have an 

associated production Lagrange multiplier because tours enter and leave the TAZs in the 

same time interval. The other TAZs have associated multipliers ranging from -5.581 to 0.008. 

The Lagrange multiplier associated with the tours impedance (β*) is negative in both the TD-

EM and the S-EM models. For the TD-EM this value is very close to the one use to create 

the experimental flows ( 138.0average
tour ).  

 

The tour experimental and estimated flows are converted to OD matrices. TD-EM flows are 

assigned to time intervals based on their arrival time; therefore, the totals for daily 

productions match the experimental productions presented in Table 1 but not necessarily the 

daily attractions. The resulting OD matrices are shown in Table 5. The results show the daily 

OD matrices estimated by both models both for daily totals, and time of day. In the case of 

the S-EM, the time-dependent matrices were estimated in proportion to the time of day split 

(45%, 35%, and 20%); while for the TD-EM model, the matrices are a direct output of the 

model. The table also shows the correlation coefficients, mean absolute percentage errors 

(MAPEs) and RMSEs for the different matrices. 
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Table 5: Daily and Time-Dependent Origin-Destination Matrices 

O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total

1 0 554 240 196 905 1895 1 0 496 244 130 1235 2105 1 0 554 240 196 905 1895

2 341 0 1367 173 502 2383 2 160 0 1803 282 182 2427 2 341 0 1367 173 502 2383

3 285 502 0 1513 846 3146 3 676 182 0 1406 882 3146 3 285 502 0 1513 846 3146

4 717 0 545 0 1593 2855 4 613 0 638 0 1604 2855 4 717 0 545 0 1593 2855

5 762 1327 933 881 0 3903 5 656 1749 461 1037 0 3903 5 762 1327 933 881 0 3903

Total 2105 2383 3085 2763 3846 14182 Total 2105 2427 3146 2855 3903 14436 Total 2105 2383 3085 2763 3846 14182

Correlation: 0.90; MAPE: 34.6% Correlation: 1.00; RMSE: 0.06

O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total

1 0 171 0 0 304 475 1 0 223 110 59 556 947 1 0 171 0 0 304 475

2 153 0 614 0 226 993 2 72 0 811 127 82 1092 2 153 0 614 0 226 993

3 128 226 0 680 380 1414 3 304 82 0 633 397 1416 3 128 226 0 680 380 1414

4 322 0 245 0 716 1283 4 276 0 287 0 722 1285 4 322 0 245 0 716 1283

5 342 596 420 396 0 1754 5 295 787 207 467 0 1756 5 342 596 420 396 0 1754

Total 945 993 1279 1076 1626 Total 947 1092 1416 1285 1756 Total 945 993 1279 1076 1626

Correlation: 0.87; MAPE: 53.7% Correlation: 1.00; RMSE: 0.10

O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total

1 0 230 135 110 365 840 1 0 174 85 46 432 737 1 0 230 135 110 365 840

2 119 0 479 97 176 871 2 56 0 631 99 64 849 2 119 0 479 97 176 871

3 100 176 0 530 296 1102 3 237 64 0 492 309 1101 3 100 176 0 530 296 1102

4 251 0 191 0 559 1001 4 215 0 223 0 561 999 4 251 0 191 0 559 1001

5 267 465 327 309 0 1368 5 230 612 161 363 0 1366 5 267 465 327 309 0 1368

Total 737 871 1132 1046 1396 Total 737 849 1101 999 1366 Total 737 871 1132 1046 1396

Correlation: 0.91; MAPE: 49.1% Correlation: 1.00; RMSE: 0.14

O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total O\D 1 2 3 4 5 Total

1 0 153 105 86 236 580 1 0 99 49 26 247 421 1 0 153 105 86 236 580

2 69 0 274 76 100 519 2 32 0 361 56 36 485 2 69 0 274 76 100 519

3 57 100 0 303 170 630 3 135 36 0 281 176 629 3 57 100 0 303 170 630

4 144 0 109 0 318 571 4 123 0 128 0 321 571 4 144 0 109 0 318 571

5 153 266 186 176 0 781 5 131 350 92 207 0 781 5 153 266 186 176 0 781

Total 423 519 674 641 824 Total 421 485 629 571 781 Total 423 519 674 641 824

Correlation: 0.90; MAPE: 81.7% Correlation: 1.00; RMSE: 0.24

Experimental Flows Estimated S-EM Flows

Experimental Flows Estimated S-EM Flows

Experimental Flows Estimated S-EM Flows

Estimated TD-EM Flows

Estimated TD-EM Flows

Estimated TD-EM Flows

Estimated TD-EM FlowsEstimated S-EM Flows

K=2

K=3

Daily

K=1

Experimental Flows
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Table 5 shows that, in general, the TD-EM does an excellent job in replicating the 

experimental OD matrix. TD-EM estimates are basically the same than the experimental 

flows for each time interval. The S-EM estimates present slight differences in daily estimates 

with a MAPE of 34.6% and a fairly high correlation (0.90) between the modeled and the 

experimental values. However, the S-EM MAPE is much higher for the time dependent 

matrices; for instance, the third interval shows an 81.7% error. This confirms the TD-EM 

model’s ability to reproduce the underlying flow patterns quite well; but also the potential 

errors of using a naïve approach to distribute S-EM flows between time intervals.  

 

Figure 4 shows for both experimental and estimated daily values, the OD flows as a function 

of OD impedances; while Figure 5 shows the tour flows as a function of tour impedances. To 

provide an indication of the degree of statistical association between flows and impedances, 

the correlation of coefficients are also shown. The most obvious feature of Figure 4 is that 

the lack of a discernible pattern that could hint at linkage between OD flows and OD 

impedances. Moreover, since the correlation coefficients are positive—which is conceptually 

incorrect—the inescapable conclusion is that the relation between OD flows and OD 

impedances is shaky to say the least. 
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 Figure 4: OD Flows versus OD Impedances 

Note: Correlation (Experimental, OD Impedance)=0.13; Correlation(TD-EM, OD Impedance)=0.13;  

Correlation(S-EM, OD Impedance)=0.15. 

 

Figure 5 shows the existence of a clear relation between tour flows and tour impedances 

which also depends on the model used to produce the estimates. In the case of the S-EM 

model, the results show a negative relation between flows and impedances, as expected, 

though the degree of statistical association (-0.20) was relatively low. In contrast, the TD-EM 

model accurately replicates the experimental values leading to a high correlation between 
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flows and impedances. In essence, the quality of the model influences the quality of the 

results. 
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 Figure 5: Tour Flows versus Tour Impedances 

 Note: Correlation(Experimental, Tour Impedance)=-0.98; Correlation(TD-EM, Tour Impedance)=-

0.98;  Correlation(S-EM, Tour Impedance)=-0.20. 

4.2. TD-ODS 

As explained in the formulation of TD-ODS 1, the model is comprised by two objective 

functions: the EM and the function to replicate traffic volumes. Using the ε-constraint method, 

it is possible to generate a Paretto efficient frontier representing the tradeoffs between the 

two conflicting objectives as shown in Figure 6. 

 

The figure reveals the conflicting nature of these two objectives: an increase in the aspiration 

level (ε) for the traffic replication objective function produces a decrease in the entropy 

objective function. This relationship can be approximated by a polynomial function with a 

high R2 (0.987). Therefore, the unitary change depends on the aspiration level according to 

the following expression: 

 
5331.0005.0

165565331.00025.0 2










      (17) 
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y = 0.0025x2 - 0.5331x + 16556

R² = 0.9871
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Figure 6: Paretto Efficient Frontier 

Tour flows are then estimated for every aspiration level and the performance of the model to 

reproduce tour flows is assessed through a RMSE analysis. The model is implemented using 

the minos solver in ampl; the time required to solve the problem ranges from 0.60 seconds 

for ε=100 to 2.74 seconds for ε=0.5. Table 6 presents the results for three aspiration levels (ε 

=0.25, ε =25 and ε =50). 

 
Table 6: Tour Flow Estimates for the TD-ODS 2 

d=1 d=2 d=3 d=1 d=2 d=3 d=1 d=2 d=3 d=1 d=2 d=3

1 1 - 2 - 3 - 4 7.0 171 133 77 168.6 130.5 75.3 169.3 131.2 75.7 170.8 132.8 76.8

2 1 - 5 - 4 - 0 7.9 151 118 67 153.5 120.2 69.5 152.8 119.6 68.9 151.2 118.2 67.2

3 2 - 3 - 4 - 5 7.3 164 128 73 170.8 133.8 75.5 169.0 132.2 74.8 164.5 128.5 73.1

4 2 - 1 - 5 - 0 7.8 153 119 69 148.8 114.4 65.4 150.0 115.7 66.3 152.7 118.7 68.7

5 4 - 5 - 2 - 3 7.9 151 118 67 145.0 113.6 64.1 146.5 114.7 64.9 150.5 117.6 66.9

6 4 - 5 - 3 - 0 6.1 194 151 86 194.4 151.4 87.9 194.5 151.4 87.5 194.1 151.1 86.2

7 4 - 5 - 1 - 2 11.1 97 76 43 98.5 77.3 55.4 97.9 76.8 53.0 97.0 76.0 44.3

8 4 - 5 - 1 - 0 10.2 110 86 49 107.5 83.9 36.9 108.4 84.7 38.9 109.9 85.9 47.6

9 5 - 2 - 3 - 1 9.1 128 100 57 130.6 102.4 61.6 129.8 101.7 60.1 128.2 100.2 57.3

10 5 - 4 - 3 - 0 4.4 245 191 109 243.3 189.8 108.4 243.7 190.1 108.4 244.9 190.9 108.9

11 3 - 2 - 5 - 0 5.0 226 176 100 222.9 173.4 98.1 223.7 174.1 98.5 225.8 175.8 99.8

12 3 - 5 - 1 - 0 8.7 135 105 61 135.7 105.9 63.1 135.6 105.7 62.8 135.1 105.1 61.3

TD-ODS: ε =50

4.14

Estimated FlowsExperimental 

Flows
Tour Se-

quence
TAZs visited

Root Mean Squared Error (RMSE)

Tour 

Impedance 

(in hours)

TD-ODS: ε =25 TD-ODS: ε =0.25

3.20 0.40

 

As expected, the smaller the aspiration level and the better the model performs. For 

instance, the RMSE for ε=50 is about 10 times higher than the one for 0.25. The error for 

ε=50 (RMSE=4.14) is larger than the one found for the TD-EM model (RMSE=0.17); though 

substantially lower than the one obtained from the S-EM (RMSE 178.89). In essence, the 

TD-ODS model represents a great enhancement for tour-based modeling because it 
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reproduces very closely time-dependent tour flows without the costly data requirements from 

the traditional approach, and what is more, without requiring TD freight trip generation as in 

the case of TD-EM. 

 

Another interesting output from the model are the Lagrangian multipliers for each constraint, 

including the ε-constraint. As shown in Table 7, the values for the multipliers vary according 

to the aspiration level, though the sign remains the same. The multipliers associated with the 

destinations constraint are always positive and range from 0.062 to 2.873. In contrast, the 

multiplier for the traffic constraint (i.e., the ε-constraint) is always negative and decreases 

with the value of ε; it ranges from -3.055 to -0.164. In the case of the cost multiplier, the value 

ranges from -0.272 to -0.140, and tends to the experimental β (-0.138) when ε tends to 0. 

 
Table 7: Lagrange Multipliers for TD-ODS Constraints 

ε=50 ε=25 ε=0.25

λ₁ 2.495 2.380 2.108

λ₂ 0.653 0.522 0.062

λ₃ 1.798 1.787 1.765

λ₄ 1.689 1.656 1.580

λ₅ 2.873 2.753 2.467

Cost β -0.272 -0.237 -0.140

Traffic χ -0.164 -0.246 -3.055

TD-ODS Model

Destinations

Lagrange Multipliers
ε-constraint value

 
 

5. CONCLUSIONS 

The assessment of the TD-EM and the TD-ODS reveals the great potential of these models 

to capture the temporal aspects from variations in freight trip generation and traffic volumes 

respectively. The enhanced freight trip distribution models proposed provide a substantial 

contribution to transportation modeling, as they reproduce the TD tour-based behavior 

inherent to freight vehicles and is bound to improve significantly the precision of urban 

transportation plans. 

Some fundamentals findings from this research are summarized as follows: 

1. Wang and Holguín-Veras (2009) and (Holguín-Veras and Thorson, 2000) show that 

there is not a clear linkage between OD flows and OD impedances for freight where 

tour impedances are key to explain flows. This paper shows that a trip-based model 

does not reproduce this pattern. Therefore, freight demand models must consider 

tour-based behavior. 

2. TD-EM model has the best performance by far but requires time-dependent freight 

trip generation information, which is difficult to obtain. In the cases where data 

availability is not a problem this model has a great potential. However, in most cases 

time-dependency of freight trip generation is obtained from traffic counts; thus 

implementing a TD-ODS will deliver more accurate and reliable estimates.  
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3. Both calibration information and time-dependency can be obtained in a cost-efficient 

way from traffic counts, with an encouraging precision (depending on the aspiration 

level set by the modeler). 

4. Some considerations to design the aspiration level of the TD-ODS include the 

confidence that the traffic assignment algorithm implemented replicates freight-

vehicles behavior and the level of confidence on the traffic counts.  
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