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ABSTRACT 

Population is steadily increasing worldwide resulting in intractable traffic congestion in urban dense 

areas. Adaptive Traffic Signal Control (ATSC) has shown strong potential to effectively alleviate urban 

traffic congestion by adjusting the signal timing plans in real-time in response to traffic fluctuations to 

achieve desirable objectives (e.g., minimize delay).The problem of coordinated ATSC is challenging 

due to the exponential growth in the number of joint timing plans to be explored as the network size 

grows. A novel Multi-Agent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal 

Controllers (MARLIN-ATSC) system is designed, developed and evaluated at a large-scale urban 

network of 59 intersections in the lower downtown core of the City of Toronto for the morning rush hour. 

MARLIN-ATSC offers two possible modes: (1) independent mode, i.e. each intersection controller is 

independently working of other agents; and (2) integrated mode, where each controller coordinates the 

signal control actions with the neighbouring intersections. The MARLIN-ATSC large-scale application 

was conducted to examine two cases: 1) corridor-specific agent coordination, and 2) network-wide 

agent coordination. In the network-wide coordination experiments three scenarios were investigated: 

uniform demand profile, variable demand profile, and unfamiliar drivers (using a low percentage of 

familiar drivers). The results show unprecedented reduction in the average intersection delay ranging 

from 27% in mode 1 to 39% in mode 2 at the network level; and travel time savings of 15% in mode 1 

and 26% in mode 2, along the busiest routes in downtown Toronto. 

 

Keywords: Reinforcement Learning, Adaptive Traffic Signal Control, Multi-Agent Reinforcement 

Learning 
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INTRODUCTION 

Population is steadily increasing worldwide and the GTHA is no exception. Consequently the demand 

for mobility is rapidly increasing and congestion is turning into a household daily chore, hampering not 

only our quality of life but also our economic competitiveness. When the growth in social and economic 

activities outpace the cash-strapped growth of transportation infrastructure, congestion is inevitable. 

Among the myriad of demand and supply management possibilities to combat congestion, Adaptive 

Traffic Signal Control (ATSC) target enhancing infrastructure efficiency by adjusting the traffic signal 

timings in real time in response to traffic fluctuations to achieve a chosen objective (e.g., minimize 

delay). ATSC, in general, has a great potential to outperform both pre-timed and actuated control 

(McShane et al. 1998).  Existing ATSC systems, however, have non-trivial limitations that make them 

relatively inefficient, expensive, and difficult to upkeep, ultimately limiting their potential benefits.  For 

instance, treating intersections as isolated nodes that are independent of neighboring intersections 

limits the efficiency gains of such technology. Therefore, optimally controlling the operation of multiple 

intersections simultaneously can be synergetic and beneficial. Such integration certainly adds more 

complexity to the system that science has not been able to resolve until very recently. Coordination has 

been typically approached in a centralized way  (e.g., SCOOT (Hunt et al. 1981), TUC(Diakaki et al. 

2002)) which is only feasible if communication channels amongst all intersections and the central 

control location are available, which is resource demanding. SCATS (Sims and Dobinson 1979) is 

another example of an adaptive signal control system that is hierarchical and distributed system in 

which an area is divided into smaller subsystems (in the range of 1–10 intersections) that perform 

independently. PRODYN (Farges et al. 1983), OPAC (Gartner 1983), RHODES (Head et al. 1992) are 

also examples of adaptive systems that are decentralized but their relatively complex computation 

schemes make their implementation costly (Bazzan 2009).   

The coordination mechanism in the systems above is employed along an arterial (where the major 

demand is). Although it is important to efficiently operate traffic signals along arterials where the major 

demand is (e.g., progression), it is also important to consider the network-wide effect of such operation. 

In a signalized urban network setting, considering a network-wide objective has the potential to improve 

overall network performance, mobility, and reduce emissions. 

Based on recent scientific advances in the last decade, coordination can be plausibly achieved using 

reinforcement learning and game-theoretic approaches (Bazzan 2009). Reinforcement Learning (RL), 

from Artificial Intelligence (AI), has shown good potential for self-learning closed-loop optimal traffic 

signal control in the stochastic traffic environment((Abdulhai and Kattan 2003),(El-Tantawy and 

Abdulhai 2010)). RL has the added advantage of being able to perpetually learn and improve service 

over time. In RL, a traffic signal represents a control agent that interacts with the traffic environment in a 

closed-loop system to achieve the optimal mapping between the environment’s traffic state and the 

corresponding optimal control action, offering an optimal control law (Sutton and Barto 1998). The 

mapping from states to actions is also referred to as the control policy. The agent iteratively receives a 

feedback reward for the actions taken and adjusts the policy until it converges to the optimal control 

policy. Applying RL to a transportation network of multiple signalized intersections is associated with 

some challenges. Agents typically react to changes in the environment at the individual level but the 

overall behavior of all agents may not be optimal.  Each agent is faced with a moving-target learning 

problem in which the agent’s optimal policy changes as the other agents’ policies change over 

time(Bazzan 2009).  Game Theory provides the tools to model the multi-agent systems as a multiplayer 
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game and provide the rational strategy to each player in a game. Multi-Agent Reinforcement Learning 

(MARL) is an extension of RL to multiple agents in a stochastic game (SG) (i.e. multiple players in a 

stochastic environment). The decentralized traffic control problem is an excellent testbed for MARL due 

to the inherited dynamics and stochastic nature of the traffic system ((Bazzan 2009), (El-Tantawy and 

Abdulhai 2010)), which is our focus in this paper. 

A novel Multi-Agent Reinforcement Learning for Integrated Network of Adaptive Traffic Signal 

Controllers (MARLIN-ATSC) system is designed and developed to directly address the challenges 

faced by MARL-based systems. First is the  exponential growth in the state-action space with the 

increase in the number of agents. Second is that the majority of the MARL-based ATSC in the literature 

assume that agents learn independently in which case each agent acts individually in its local 

environment without explicit coordination1 with other agents in the environment. Although this simplifies 

the problem, it limits their usefulness in case of a network of agents. For example in over-saturated 

traffic conditions, queues could easily propagate from a downstream intersection (agent) and spills 

back to the upstream intersections (agents) in a network-wide cascading fashion; such cases require a 

network-wide multi-agent coordination as discussed earlier. Thus, flexible and computationally efficient 

approaches are becoming instrumental in controlling a network of agents; plausibly by employing 

heuristics and approximate approaches based on modifying the existing MARL techniques (Bazzan 

2009). 

To address these limitations, we present MARLIN-ATSC that offers the following features and 

characteristics: 1) decentralized design and operation- typically less expensive compared to the 

centralized system; 2) scalable to accommodate any network size; 3) robust – with no single point of 

failure, 4) model-free - does not require a model of the traffic system that is challenging to obtain; 5) 

self-learning - reduces human intervention in the operation phase after deployment (the most costly 

component of operating existing ATSCs) ; 6) coordinated – by implementing mode 2 (integrated mode), 

which coordinates the operation of intersections in two-dimensional road networks (e.g. grid network), a 

new feature that is unprecedented in ATSC state-of-the-art and practice. In addition, MARLIN-ATSC is 

tested on a large-scale simulated network of 59 intersections in downtown Toronto using the input data 

(e.g. traffic counts, signal timings, etc.) provided by City of Toronto. 

 

RL FOR ADAPTIVE TRAFFIC SIGNAL CONTROL SYSTEMS 

Thorpe (1997) applied the SARSA RL algorithm to a simulated traffic light control problem. The results 

showed that the SARSA RL algorithm outperformed the fixed timing plans by reducing the average 

vehicle waiting time by 29%. Wiering (2000) utilized model-based RL (with state transition models and 

state transition probabilities) to control traffic-light agents to minimize the waiting time of vehicles in a 

small grid network. The experimental results showed that RL systems outperform the non-adaptive 

systems by 22% in waiting time. Abdulhai et al. (2003) applied a model-free Q-Learning technique to a 

simple two-phase isolated traffic signal in a two-dimensional road network. Q-Learning for the isolated 

traffic-light controller outperformed the pre-timed control scheme for the variable traffic flow case by 

around 44%. Camponogara and Kraus Jr (2003) formulated the traffic signal control problem as a 

                                                 
1
 It is important to not confuse the coordination that is concerned about creating green wave along a certain corridor by adjusting the offset 

timing (defined as progression hereafter) with the mechanism between agents (signalized intersections) to coordinate their policies such that a 
certain objective is achieved for the entire traffic network (defined as coordination hereafter). In this paper, coordination refers to the latter one.  
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distributed stochastic game in which agents employed a distributed Q-Learning algorithm.  When 

testing policy 3 (i.e. both agents run Q-learning), a 43% reduction in waiting time was achieved 

compared to policy 1(assigns the same probability to all actions available to an agent).  Oliveira et al. 

(2006) extended the RL to multiple isolated traffic lights. They proposed an RL method called 

Reinforcement Learning with Context Detection (RL-CD), which can handle stochastic traffic patterns 

that occur due to the traffic dynamics. Richter et al. (2007) applied the Natural Actor Critic (NAC) 

algorithm to a 10 × 10 junction grid simulation network. NAC outperformed SAT (adaptive controller 

inspired by SCATS) by 20% reduction in average network travel time. Another example can be found in 

Arel et al. (2010) where RL is used to control the central intersection in a network of 5 intersections 

while the other 4 intersections use the longest-queue-first heuristic. Li et al. (2008) proposed an RL-

based approach in which each agent considered the weighted sum of its local delay and its neighbors’ 

delays as the outcome of its action.  Salkham et al. (2008)  proposed a similar algorithm to provide 

adaptive and efficient urban traffic control. Medina et. al. (2012) used Q-learning, and an approximate 

DP algorithm to control the traffic signals in which the learning agent considered its local state in 

addition to information about the congestion levels of neighbouring intersections.  

In most of the previous studies the algorithms have been applied to simplified scenarios and under 

strong assumptions in terms of traffic behavior by considering simplified simulation environment 

((Abdulhai, Pringle et al. 2003; Camponogara and Kraus Jr 2003; De Oliveira, Bazzan et al. 2006; 

Richter, Aberdeen et al. 2007; Arel, Liu et al. 2010)) ,  and/or assuming a hypothetical traffic flows 

((Thorpe 1997; Wiering 2000; Abdulhai, Pringle et al. 2003; Camponogara and Kraus Jr 2003; De 

Oliveira, Bazzan et al. 2006; Richter, Aberdeen et al. 2007; Shoufeng et al. 2008; Arel, Liu et al. 2010)) 

which does not necessarily mimic the reality in traffic networks. Moreover, the previous studies 

considered independent learning agents and did not consider any explicit mechanism for coordination.  

On the other hand,  Kuyer et al. (2008) was found the only algorithm, to the best of authors’ knowledge,  

that considered explicit coordination mechanism between the learning agents  extending the work of 

Wiering (2000) using the Max-plus algorithm. Max-plus algorithm was used to estimate the optimal joint 

action by sending locally optimized messages among connected agents. However, Max-plus algorithm 

was found computationally demanding as it requires negotiations between the agents to coordinate 

their actions. Due to real-time nature of the ATSC problem, this forces the agents to report their current 

best action at any time even if the action found so were sub-optimal. Also, the use of a model-based RL 

approach adds unnecessary complexities compared to using a model free approach like Q-Learning.  

In conclusion, there are two major challenges associated with applying RL (MARL) to ATSC problem; 

the need for coordination, and the cure of dimensionality as discussed below: 

Need for Coordination: 

The need for coordination stems from the fact that the effect of any agent’s action on the environment 

depends also on the actions taken by the other agents.  Hence, the agents’ choices of actions must be 

mutually consistent in order to achieve their intended effect(Busoniu, Babuska et al. 2008) .  

It can be concluded from the reviewed literature that the majority of the previous studies consider 

independent learning agents Oliveira et al. (De Oliveira, Bazzan et al. 2006), Camponogara and Kraus 

Jr (Camponogara and Kraus Jr 2003) , Bazzan (Bazzan 2005), Richter et al. (Richter, Aberdeen et al. 

2007) , Arel et al. (Arel, Liu et al. 2010) , Wiering (Wiering 2000), Li et al. (Li, Zhao et al. 2008) , 
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Salkham et al. (Salkham, Cunningham et al. 2008). Although Kuyer et al. (Kuyer, Whiteson et al. 2008) 

considered the two-level coordination, it suffers from the above mentioned limitations. 

Curse of Dimensionality:  

Although the existence of few coordination-based MARL methods (e.g., OAL(Claus and Boutilier 1998), 

and NSCP(Weinberg and Rosenschein 2004)), they suffer from the curse of dimensionality issue that 

arises because the state space is growing exponentially with the number of agents. Even in SG-based 

MARL approaches that are proven to optimally converge to the joint policy, each agent has to keep a 

set of tables whose size is exponential in the number of agents: |S1|×…×|SN|×|A1|×…×|AN | where Si 

and Ai represent the state and action spaces for agent i, respectively. In addition to the dimensionality 

issue, these methods require each agent to observe the state of the whole system which is infeasible in 

case of transportation networks.  

In the next section we introduce a new algorithm that maintains a coordination mechanism between 

agents without compromising the dimensionality of the problem. 

MULTI-AGENT REINFORCEMENT LEARNING FOR INTEGRATED 
NETWORK OF ADAPTIVE TRAFFIC SIGNAL CONTROLLERS (MARLIN-
ATSC)  PLATFORM 

The MARLIN-ATSC platform is illustrated in Figure 1. The platform consists of two main layers; the first 

layer is an input configuration layer that is responsible for configuring and providing the necessary input 

to the second layer.  

Control Layer

Agent
(Learning and

Decision Making)

Environment
(Observation 
and  Acting)

Environment-Agent 
Interface

(Synchronized Interaction)

RL 

Agent 

Parameters

Signalized 

Intersection 

Parameters

Input Configuration Layer
 

Figure 1- MARLIN -ATSC Platform 

The configuration layer has two main roles; 1) configures the simulation-based learning environment 

(model) such that the simulated environment closely matches the real-world environment, 2) configures 

the RL-design parameters.  

 
The second layer is a control layer that includes three interacting components (as shown in Figure 1):  
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Agent 

The Agent component implements the control algorithm; The agent is the learner and the decision-

maker that interacts with the environment by first receiving the system's state and fthe reward and then 

selecting an action accordingly. A Generic agent model is developed using Java Programming 

Language such that different levels of coordination, learning methods, state representations, phasing 

sequence, reward definition, and action selection strategies can be tested for any control task.  In 

MARLIN-ATSC, agents can implement one of the following two control modes: 

 Independent Mode: In this mode, each controller has an RL agent working independently of 

other agents using Multi-Agent Reinforcement Learning for Independent controllers (MARL-I) in 

which each agent implements a Q-Learning algorithm (Watkins and Dayan 1992).  

 Integrated Mode: In this mode, each controller coordinates the signal control actions with the 

neighbouring controllers by implementing MARLIN learning algorithm. 

In typical traffic networks, signalized intersections (agents) are physically connected through the 

roadway network which represents a set of neighbouring agents. Although in traffic networks, the agent 

is incapable of observing the conditions of the entire network, it is possible to observe the conditions of 

the neighbouring agents.  In MARLIN, each agent plays a game with all its adjacent intersections in its 

neighbourhood. The agent has a number of learning modules; each corresponds to one game. The 

state-space and the action-space are distributed such that the agent learns the joint policy with one of 

the neighbours.  

The following are the steps for the learning approach designed in MARLIN that is formally described in 

a pseudo code in Algorithm 1: 

 If there are  neighbours for agent i, there are  partial state and action spaces for agent i. 

Each partial state space and action space consists of agent i and one of the neighbours 

 ( , .   

 Each agent i is builds a model that estimates the policy for each of its neighbours and 

represented by a matrix   where the rows are the joint states  ×  and the 

columns are the neighbour’s actions .  Each cell  represents the 

probability that agent   takes action at the joint state  using the count of visits 

to the state-action  for the state-action pair  (Eqn. 1). 

 Each agent i learns the optimal joint policy for agents i and  by updating the 

Q-values that are represented by a matix of  | × | rows and | × | columns where each 

cell ,  represents the Q-value for a state-action pair in the partial spaces 

corresponding to the pair of connected agents  ;   

 Each agent updates Q-values ,  using the value of the best-response 

action taken in the next state. The best-response value (  is the maximum expected Q-value 

at the next state which is calculated using the models for other agents (Eqn. 2).  

 Each agent decides its action without direct interaction with the neighbors. Instead, the agent 

uses the estimated models for the other agents and act accordingly. Agent i chooses the next 

action using a simple heuristic decision procedure which bias action selection toward actions 

that has the maximum expected Q-value over its neighbours . The likelihood of Q-values is 

evaluated using the models of the other agents,  estimated in the learning process (Eqn. 

4). 

Algorithm 1: MARLIN  Learning 
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Initialization at time : 

For each agent  : 

For each neighbor  

Initialize  

=1/| |, , =0 

End for 
End for 

For each time step  , do: 

For each agent , do: 

For each neighbor ,  do: 

 
a. Observe ,  , and  

b. Update  

                                                               (1) 
c. Choose the maximum expected Q-value at state  

                                                                                               (2) 
d. Update  

                                                                                    (3)                 
Decide  

                                                                                               (4) 
End For 
End For 
End For 

Simulation Environment 

The simulation environment component models the traffic environment. In this paper, Paramics, a 

microscopic traffic simulator, is used to model traffic environment (Quadstone Paramics 2012). 

Paramics models stochastic vehicle flow by employing speed regulations, car-following, gap 

acceptance, and overtaking rules. Paramics provides three methods of traffic assignment that could be 
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employed at different levels: “all-or-nothing” assignment, stochastic assignment, and dynamic feedback 

assignment. In this application a dynamic stochastic traffic assignment was used where: 1) a random 

noise was added to the travel cost to account for the heterogeneity among drivers’ perception of travel 

cost, 2) a dynamic feedback interval was used to update route travel times for familiar drivers in the 

simulation. Paramics API functions were used to construct the state, execute the action, and calculate 

the reward for each signalized intersection. 

Some of the main challenges in deigning any RL system are the design of the state definition, action 

definition, and reward definition.  In (El-Tantawy and Abdulhai 2011), a comprehensive investigation of 

these key issues in RL-based signal control for isolated intersections is conducted. The state definition, 

action definition, and reward definition recommended  in (El-Tantawy and Abdulhai 2011) and (El-

Tantawy and Abdulhai 2012)are adopted in this paper as follows (for more details on the definitions, 

please refer to (El-Tantawy and Abdulhai 2011)); 

State Definition : Queue length 

The agent’s state is represented by a vector of 2+P components, where P is the number of phases. The 

first two components are: 1) index of the current green phase, and 2) elapsed time of the current phase. 

The remaining P components  are the maximum queue lengths associated with each phase. 

Action Definition: Variable Phasing Sequence  

The agent is designed to account for variable phasing sequence in which the control action is either to 

extend the current phase or to switch to any other phase according to the fluctuations in traffic, possibly 

skipping unnecessary phases. Therefore, this algorithm is an acyclic timing scheme with variable 

phasing sequence in which not only the cycle length is variable but also the phasing sequence is not 

predetermined.  Hence, the action is the phase that should be in effect next. 

Reward Definition: the reduction in the Total Cumulative Delay 

The immediate reward for certain agent is defined as the reduction (saving) in the total cumulative 

delay associated with that agent, i.e., the difference between the total cumulative delays of two 

successive decision points. The total cumulative delay at time k is the summation of the cumulative 

delay, up to time k, of all the vehicles that are currently in the intersections’ upstreams. If the reward 

has a positive value, this means that the delay is reduced by this value after executing the selected 

action. However, a negative reward value indicates that the action results in an increase in the total 

cumulative delay. 

Interface 

Interface component manages the interactions between the agent and the simulation environment by 

exchanging the state, reward, and action. The interaction between the agent and the environment is 

associated with the following design elements: 

 A synchronized interaction between the agent and the environment was designed to ensure that 

the simulation environment is held while the agent is performing the learning and the decision 

making processes and finally produces the action that should be executed by simulation 
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environment. At the same time, the agent should be on hold until the action is executed in the 

environment and the resultant state and the reward are measured. 

 The system was designed such that the interaction frequency is variable for each agent. The 

interaction occurs each specified time interval (1 sec in this research) as long as the current 

green for a signalized intersection that is associated with an agent i exceeded the minimum 

green time. Otherwise, the interaction starts after the minimum green.  

The agent was designed to learn off-line through a simulation environment (such as the micro-

simulation model employed in the experiments) before field implementation. After convergence to the 

optimal policy, the agent can either be deployed in the field – by mapping the measured state of the 

system to optimal control actions directly using the learned policy; or it can continue learning in the field 

by starting from the learned policy. 

EXPERIMENTAL RESULTS 

Testbed Network: 

MARLIN-ATSC is tested on a simulated network of the Lower Downtown Toronto network.  The lower 

downtown of Toronto is the core of the City of Toronto. The lower downtown of Toronto in this study is 

bounded to the South by the Queens Quay corridor, to the West by the Bathurst St, to the East by the 

Don Valley Parkway (DVP) and to the North by Front St. Toronto is the oldest, densest, most diverse 

area in the region and its downtown core contains one of the highest concentrations of economic 

activity in the country. This paper demonstrates large-scale application of MARLIN-ATSC on a 

simulated replica of the lower downtown core. A base-case simulation model for the lower downtown 

core was originally developed using Paramics, a microscopic traffic simulator, in the ITS Centre and 

Testbed at the U of T for year 2006. In this application, the model is further refined to reflect the signal 

timing sheets provided by the City of Toronto2. The analysis period considered in this application is the 

AM peak hour, which has around 25,000 vehicular trips. 

Benchmarks 

It is typically difficult to find a benchmark for large-scale traffic signal control problems given that the 

operational details of most traffic control systems are not easily available due to obvious commercial 

reasons. The performance of MARLIN-ATSC approach is compared to the Base Case (BC) scenario in 

which traffic signals, as defined and operated by the City of Toronto, are mix of fixed-time control, semi-

actuated control, and SCOOT control as shown in Figure 2. It is worth noting that due to the limited 

technical details about the operation of SCOOT, it is approximated in this thesis as an enhanced fully-

actuated control in which loop detectors are placed on all approaches and the extension times are 

conducted second-by-second. 

                                                 
2 Contact person is Rajnath Bissessar,  City of Toronto – Transportation Services, Manager of the UTCS 
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Figure 2- Currently Implemented Signal Control Systems  

Experimental Setup 

Two types of coordination are examined: 1) arterial (corridor)-specific coordination, and 2) network-wide 
coordination.  
In the arterial control case MARL-I and MARLIN are tested on the Lakeshore Arterial, an arterial where 
considerable variations in traffic are anticipated because it runs parallel to the Gardner Expressway. 
MARLIN is used to test two cases: 1) arterial-specific coordination with agents coordinated only with 
their neighbours on the specific arterial (called MARLIN-A), and 2) network-wide agents coordinated 
with all neighbours (called MARLIN-C (Network Control)). 
In the network control experiments three scenarios are investigated; uniform demand profile, variable 
demand profile, and unfamiliar drivers.  
- Normal: in this scenario uniform demand profile is used. The percentage of familiar drivers is 60% and 
the feedback interval is 2 min; 
- Variable: in this scenario variable demand profile is used (as shown in Figure 3) to replicate any 
expected highly variable traffic conditions; 
- Unfamiliar Drivers: in this scenario 30% familiar drivers and a 4 min feedback interval are considered 
to investigate the case when drivers are less aware of other routing options. 
In each of the three above scenarios, results are reported for BC control systems (existing conditions), 
MARL-I (represents MARLIN-ATSC Independent Mode with no communication between agents), and 
MARLIN (represents MARLIN-ATSC Integrated Mode with coordination between agents).   
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Figure 3- Demand Profiles 

Results and Discussion 

Arterial Control Experiments 

In these experiments, Lake Shore Boulevard (LS Blvd) is selected as the testbed arterial. LS is a major 

East/West arterial in Toronto’s waterfront. It is an alternative route for the Gardiner Expressway, and 

therefore it is a candidate route for many trips destined to downtown Toronto. Consequently it is one of 

the busiest and key corridors in the network, where substantial variations in traffic flows are anticipated. 

The modelled section of the arterial is around 7 km long and contains 20 intersections. 

MARL-I and MARLIN-A are only applied to the signalised intersections along the arterial, while the 

remaining intersections in the network are operated with the same control as the BC. It is also important 

to note that MARLIN-C is applied over the entire network in order to study the effect of two-dimensional 

(network) coordination vs one-dimensional (arterial) coordination. 

Figure 4 shows the average delay per intersection for major and minor streets for the 20 intersections 

along the LS corridor. It is shown in Figure 4 that MARL-I, MARLIN-A and MARLIN-C outperform the 

BC by around 10%, 29%, 55% in terms of average delay/intersections along the major street 

approaches (i.e. EB and WB) and by around 49%, 63%, 69% in terms of average delay/intersections 

along the minor street approaches (i.e. NB and SB). This indicates that the system not only minimises 

the delay along major street approaches, but also along those of the minor streets. 
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Figure 4-  Comparison of Major and Minor Street Average Delay Per Intersection  

The route travel time variability in the morning rush hour is illustrated in Figure 5 and Figure 6 have 

been produced. MARLIN-C outperforms the other systems with respect to travel time variability, which 

is expected because in the MARLIN-C all the signalised intersections in the network are operating 

using MARLIN. MARLIN-A on the other hand still exhibits less travel time variability compared to the 

BC, but not to the level achieved by MARLIN-C. Overall MARL-I and MARLIN systems exhibit less 

travel time variability, which is indicative of travel time reliability. Reliable travel times reflects a robust 

system and less cost due to congestion. 
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Figure 5-  Lake Shore EB Travel Time Variations for: Base Case, MARL-I, MARLIN  
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Figure 6-  Lake Shore WB Travel Time Variations for: Base Case, MARL-I, MARLIN 

Network Control Experiments 

 Normal Scenario 

The performance of each control system is evaluated based on the following measures of 

effectiveness: 

 Average Delay Per Vehicle (sec/veh) 

 Average Max. Queue Length Per Intersection (veh) 

 Average Standard Deviation of Queue Lengths Across Approaches (veh) 

 Number of Completed trips  

 Average CO2 emissions factors (gm/km) 

 Average Travel Time For Selected Routes (min)  

Table 1 compares the performance of the BC against the MARLIN-ATSC system with and without 

communication among agents, i.e, MARLIN and MARL-I, respectively.  

The analysis of the results shown in Table 1  leads to the following findings: 

The two MARLIN-ATSC algorithms result in lower average delay, higher throughput, shorter queue 

length, and stop time compared to those from the base case. The most notable improvements are the 

average delay (38% MARLIN vs BC), standard deviation of average queue length (31% MARLIN vs 

BC), CO2 emission factors (30% MARLIN vs BC).  

These substantial improvements are not only due to the intelligence of the RL algorithm, but also as a 

result of the coordination mechanism between the agents to reach a network-wide set of actions that 

minimize the long term delay. This coordination results in the so-called “metering” effect from the 

upstream intersection to the downstream intersection while accounting for the queues and delays at the 

downstream intersection. In fact, the tangible savings in the standard deviation in the queue length is 

interesting because this means balanced queue among all intersection approaches.  
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Table 1- Network-Wide MOE in the Normal Scenario

 

 MARL-I outperforms the BC in all the MOEs, most notably are the average intersection delay 

(27%) and the C02 emission factor (28%). However, comparing MARLIN to MARL-I, it is found 

that the latter experience relatively higher delays because in MARL-I the actions are based only 

on locally collected data and thereby results in more vehicles retained in the network at the end 

of the simulation (6% throughput improvement in MARLIN vs 2.8% throughput improvement in 

MARL-I). 

It is important to study the effect of various control systems on the travel time and travel time variability 

for selected key routes in the lower downtown core of Toronto. Route travel times and standard 

deviation in travel time for the BC, MARL-I, and MARLIN scenarios for eight key routes in the network 

are presented in Table 2. To further study the route travel times within the simulation hour, the travel 

time for the eight routes are plotted in . The analysis of Table 2 and Figure 7  leads to the following 

conclusions: 

 It is clear that MARLIN outperforms MARL-I and BC in all routes. The % improvements range 

from 4 % in route 2 to 30% in route 7. MARL-I outperforms BC in almost all cases; the % 

improvements ranges from 3% in route 1 to 15% in route 5 with the exception of route 7, the BC 

scenario performs better than MARL-I. 

 
Table 2 - Route Travel Times for BC, MARL-I, and MARLIN 

                                   System

MOE
BC MARL-I MARLIN

% Improvments 

MARL-I Vs. BC

% Improvments 

MARLIN Vs. BC

% Improvments MARLIN Vs. 

MARL-I

Average Intersection Delay  (sec/veh) 35.27 25.72 22.02 27.06% 37.57% 14.41%

Throughput (veh) 23084 23732 24482 2.81% 6.06% 3.16%

Avg Queue Length (veh) 8.66 6.60 5.88 23.77% 32.07% 10.88%

Std. Avg. Queue Length (veh) 2.12 1.62 1.47 23.37% 30.74% 9.61%

Avg. Link Delay (sec) 9.45 8.50 5.04 10.07% 46.73% 40.76%

Avg. Link Stop Time (sec) 2.74 2.57 2.02 5.95% 26.06% 21.38%

Avg. Link Travel Time (sec) 16.81 15.81 12.32 5.97% 26.70% 22.05%

CO2 Emission Factor (gm/km) 587.28 421.34 412.21 28.26% 29.81% 2.17%
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 It is interesting to find that the Gardiner Expressway EB traffic (inbound) travel time 

improves by 19% in the MARLIN scenario. Alleviating the congestion on Spadina St and 

York St off-ramps contributes the most to these savings. This clearly shows the effect of 

the downstream capacity on the freeway performance. For the Gardiner WB direction 

traffic was not as congested as the EB but MARLIN still attains 4% improvement in 

average route travel times. 

 The most congested routes appear to be routes 7 and 8; through which traffic originated 

at the west end of the study area and destined in the downtown core (Spadina St and 

University Ave). MARLIN achieves 30% and 26% improvements in route 7 and 8, 

respectively, which reflects the superior effect of the two-dimensional coordination 

between agents.     

 From observing the temporal distribution of route travel time across the simulation hour, it 

is generally found that MARLIN is stable and exhibits less variation compared to the BC 

and MARL-I scenarios. While the BC scenario exhibits the highest variability in travel time 

(as shown in the standard deviation values in Table 2), MARL-I still shows some 

variations, most notably in the most two congested routes (route 7, 8). MARLIN shows 

stable route travel times in all routes. 
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 1  
Figure 7- Average Route Travel Time for Selected Routes 

 Variable Profile Scenario 

Due to the large-scale size of the network and for the sake of conciseness, only average 

delay, throughput, and average and Std of queue length are presented for the variable profile 

test case in Table 3. 
Table 3 - Network-Wide MOE for Variable Profile Scenario 

                                   System

MOE
BC MARL-I MARLIN

% Improvments 

MARL-I Vs. BC

% Improvments 

MARLIN Vs. BC

% Improvments 

MARLIN Vs. MARL-I

Average Intersection Delay  (sec/veh) 46.26 29.41 24.51 36.41% 47.01% 16.67%

Throughput (veh) 18452 21600 24518 17.06% 32.87% 13.51%

Avg Queue Length (m) 14.20 9.97 6.26 29.84% 55.91% 37.16%

Std. Avg. Queue Length (m) 3.19 2.22 1.55 30.45% 51.45% 30.20%  
The analysis of the results shown in Table 3 leads to the following findings: 

 Compared to the uniform profile case, considerable deterioration in the performance of BC 

is observed (24% increase in average delay, 25% decrease in throughput, 39% increase 

in average queue length, and 34% increase in Std of average queue lengths);  

 The two MARLIN-ATSC algorithms considerably outperform the BC in all the MOEs. The 

most notable improvements are in average delay (47% MARLIN vs BC), throughput (33% 

MARLIN vs BC), average queue length (56% MARLIN vs BC), and Std of average queue 

length (51% MARLIN vs BC); 

 MARL-I outperforms the BC in all the MOEs, most notably the average intersection delay 

(36%). Additionally, comparing MARLIN to MARL-I it is found that the latter experience 

higher delays because in MARL-I the actions are based on local traffic states with no 

coordination between other agents, therefore MARL-I results in more vehicles retained in 

the network at the end of the simulation (14% throughout improvement in MARLIN vs 

MARL-I). It is found that MARL-I exhibits higher average queue length values than 

MARLIN (37%) and less balancing for the queue lengths across the approaches (30%); 
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 This deterioration in the performance of the BC in the variable profile case is due to the 

fact that high variations in the traffic stream are causing long queues to form and 

blockages at some intersections. These cases result in substantial performance 

degradation in a cascading fashion (especially in this grid-like urban network) as the traffic 

control system in the BC could not respond to the change in traffic patterns in an 

adequately adaptive manner. This observation is a clear indication that the BC is not 

robust, as its performance degrades considerably with slight changes in the traffic 

conditions. The key to the good performance achieved by MARLIN-ATSC, on the other 

hand, is that agents could promptly adapt the signal timings, by skipping unnecessary 

phases and by providing optimised timing per phase to any variations in the traffic stream.  

 

 Drivers Unfamiliarity 

The main focus in this section is to investigate the effect of Travellers Information Systems 

(TIS) and the unfamiliarity of drivers on the performance of different control systems as 

shown in Table 4.   
Table 4 - Network-Wide MOE for the Driver Familiarity Scenario 

                                   System

MOE
BC MARL-I MARLIN

% Improvments 

MARL-I Vs. BC

% Improvments 

MARLIN Vs. BC

% Improvments 

MARLIN Vs. MARL-I

Average Intersection Delay  (sec/veh) 42.37 39.20 23.47 7.48% 44.60% 40.12%

Throughput (veh) 11601 13739 22664 18.43% 95.36% 64.96%

Avg Queue Length (m) 13.13 10.43 6.82 20.53% 48.06% 34.64%

Std. Avg. Queue Length (m) 2.96 2.43 1.81 17.93% 38.71% 25.32%  
 

The analysis of the results shown in Table 4  leads to the following findings: 

 Compared to the uniform profile case, a substantial deterioration in the performance of BC 

is observed using the low percentage of familiar drivers (16% increase in average delay, 

34% increase in average queue length, and 28% increase in Std of queue lengths); 

 The two MARLIN-ATSC algorithms considerably outperform the BC in all the MOEs. 

MARL-I outperforms the BC in all the MOEs, most notably the average queue length 

(20%). However, comparing MARLIN to MARL-I it is found that the latter experiences 

higher delays and congestion (64% throughout improvement in MARLIN vs MARL-I);  

 This deterioration in the performance of the BC in the low driver familiarity is attributed to 

the fact that a fewer number of travellers are receiving updated travel times (and costs in 

general) to their destination, therefore they are less likely to switch routes in the case 

where their route travel time to destination increases. This effect creates oversaturation 

conditions in some areas of the network, where MARL-I agents fail to converge to the 

optimal policy.  

CONCLUSIONS AND FUTURE WORK 

In this paper, previous studies that tackled the ATSC problem using MARL approaches were 

reviewed and the gaps in literature were highlighted.  The major challenges for using MARL-

based signal control system was the need for coordination and the curse of dimensionality. In 

order to attain the compromise of achieving coordination-based decentralized adaptive real-

time control without suffering from the  curse of dimensionality challenge that is associated 
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with MARL techniques, a Multi-Agent Reinforcement Learning for Integrated Network of 

Adaptive traffic Signal Controllers (MARLIN-ATSC) system was presented. In this system, 

each agent plays a game with its immediate neighbours. Each agent learns and converges to 

the best response policy to all neighbours’ policies. The paper demonstrated the essence of 

MARLIN-ATSC on a large-scale urban network of 59 intersections in Downtown Toronto. A 

MARLIN-ATSC large-scale application was conducted to examine two cases: 1) corridor-

specific agent coordination, and 2) network-wide agent coordination. In the corridor 

experiments, the LS Blvd was selected as the testbed arterial as it is one of the most 

important corridors in downtown Toronto.  In the network-wide coordination experiments, 

three scenarios were investigated: uniform demand profile, variable demand profile, and 

unfamiliar drivers (using a low percentage of familiar drivers). In each of the three scenarios 

above, the results were reported for BC control systems from the field (simulated using signal 

timing sheets provided by the City of Toronto, MARL-I (represents MARLIN-ATSC 

Independent Mode with no communication between agents), and MARLIN (represents 

MARLIN-ATSC Integrated Mode with coordination between agents). In the arterial 

experiment, MARLIN generally outperformed the BC in terms of average travel time, and Std 

of travel time. In the normal scenario of network-wide coordination experiments, MARL-I 

outperformed the BC in all the MOEs. However, comparing MARLIN to MARL-I it was found 

that the latter experienced relatively higher delays. Compared to the uniform profile case, 

substantial deterioration in the performance of BC in the variable profile scenario was 

observed. Although MARL-I also outperformed the BC in all the MOEs in the variable profile 

scenario, comparing MARLIN to MARL-I it is found that the latter produced higher delays 

because in MARL-I the actions are based on locally sensed states with no coordination with 

other agents. Thereby MARL-I resulted in more vehicles being retained in the network at the 

end of the simulation. In the unfamiliar drivers scenario a large deterioration in the 

performance of BC was observed. The two MARLIN-ATSC algorithms substantially 

outperformed the BC in all the MOEs. However, comparing MARLIN to MARL-I it was found 

that the latter produced higher delays and congestion. It was found that the deterioration in 

the performance of the BC in the low drivers familiarity case is attributed to the fact the 

unfamiliar drivers are less likely to switch routes in cases where their routes to the 

destination became congested, which created oversaturation conditions in some areas of the 

network and hence also deteriorated the performance of MARL-I. 

To quantify the benefits of MARLIN-ATSC relative to existing ATSC systems such as 

SCOOT, without approximation, the following approaches could be used in the future: 1) 

compare the simulation-based measures of MARLIN with the real life observations and 

benefits of SCOOT for SCOOT- controlled intersections; 2) use hardware-in-the-loop 

simulation (HILS) methodologies to replicate the logic of SCOOT within the simulation 

software such as Paramics.   
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