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1. Introduction

During past few decades, port authorities have transformed to meet the need

of rapidly growing international trades and competitive environments. One obvious

change is that these authorities in some countries shift from owners and operators to

landlords of ports, as documented in Slack and Fremont (2005). Landlord authori-

ties lease lands and superstructures of ports to private sectors by signing concession

contracts. These contracts itemize how terminal operators pay for the rented capi-

tal facilities and lands of ports. Whether this change brings benefits for ports would

depend on the designs of corresponding concession contracts. Since game theory is

helpful in characterizing interactions among economic agents, we try to explore port

authorities’ optimal concession contracts in a game theoretical framework.

We construct a sequential game here. In this model, a port authority first an-

nounces the contract she offers, then two terminal operators compete in service prices

or cargo amounts. The port authority seeks to maximize fee revenues collected from

terminal operators through the signed contracts. The types of contract considered are

fixed-fee, unit-fee, and two-part tariff. We find that when the less-efficient operator’s

marginal service costs are small, either the two-part tariff or unit-fee scheme would be

favored. Oppositely, the two-part tariff and unit-fee schemes would have the same fee

revenues at equilibria, and be equally preferred. Finally, if both terminal operators’

efficiency is identical, the two-part tariff contract would be selected. We also inves-

tigate how optimal concession contracts are affected by model’s parameters, such as

operators’ marginal service costs and their service differentiation degree. The results

of this study will provide port authorities useful information in designing concession

contracts.

We are not the first to investigate concession contracts. The relationships between

our work and relevant literature are as follows. Trujillo and Nombela (2000) provide

a formal definition that concession contracts ought to specify payments, obligations,
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and risk allocations between port authorities and terminal operators. For simplicity,

we focus only on the payment part of concession contracts. De Monie (2005) identifies

three-type general concession contracts based on ports’ traffic volumes. Our unit-fee

and fixed-fee schemes are special cases of De Monie’s (2005). Jansson and Ryden

(1979), Button (1979), and Strandenes and Marlow (2000) all suggest that port au-

thorities use two-part tariff schemes to charge shipping liners. Nevertheless, Ferrari and

Basta (2009) show that two-part tariff contracts are not efficient, thus propose a better

fee scheme adjustable to the consumer price index. Different from the four papers

above, interactions between the port authority and terminal operators and competi-

tive behaviors of the operators are analyzed in our setup. On the other hand, surveys

of Notteboom and Verhoeven (2010) reveal that the most often included clauses in

the contracts between port authorities and terminal operators in Europe relate to the

throughput guarantee. Marques and Fonseca (2010) propose several performance indi-

cators to measure and to improve ports’ regulating processes in Portugal. In contrast,

this study concentrates on the fee-revenue maximization property of concession con-

tracts for landlord port authorities. Cruz and Marques (2012) explore risk-sharing of

several Portuguese concession contract, while we focus on payment parts of concession

contracts.

Saeed and Larson (2010) adopt a Bertrand game framework to explore how termi-

nal operators’ pricing and port authority’s profits in Pakistan vary with different types

of concession contracts. Their simulation outcomes exhibit that optimal concession

contracts offered by the port authority should have high unit fee and low annual rent.

However, the other operator’s contracts are hold fixed when Saeed and Larson (2010)

examine how different contracts offered to one terminal operator affect port authority’s

profits. This setting may not be consistent with real-world situations because terminal

operators often bid for contracts simultaneously. Our study makes no such assumption.

And we obtain the analytical or closed-form solutions for optimal concession contracts

for port authorities, instead of using simulation. On the other hand, Fu and Zhang
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(2010) analyze the concession revenues shared by airports and airlines. They find that

the sharing design brings higher social welfare, but may cause more serious competi-

tion among airliners. Fu and Zhang (2010) focus on two-part tariff contracts, while we

compare three-type concession contracts for the port authority.

The contract types inspected in this study have been widely adopted in the litera-

ture on patent holders’ licensing behaviors. Our setup differs from models of licensing

literature in two respects. First, firms’ marginal costs would decrease after patent li-

censes being purchased in their models, while terminal operators’ costs stay the same

in our setup after contracts being signed. Therefore, our optimal concession contracts

depend on terminal operators’ marginal service costs, rather than innovation sizes in

the licensing literature. Second, many earlier works of licensing (e.g., Kamien and Tau-

man, 1986; Kamien et al., 1992) compare merely fixed-fee and unit-fee contracts, but

we compare three contract types as in the later licensing literature (e.g., Giebe and

Wolfstetter, 2008; Poddar and Sinha, 2010; Meniere and Parlane, 2010). Moreover,

we discover two-part tariff contracts are not necessarily superior to the other two for

port authorities, as found in the later licensing literature. Nevertheless, the existence

conditions of our equilibrium contracts are different from those in licensing literature.

The rest of this paper is organized as follow. The model is presented in Section 2.

Terminal operators’ optimal behaviors are derived and described in Section 3. Optimal

concession contracts are demonstrated in Section 4. Properties of the optimal contracts

are explored in Section 5. Finally, conclusions and policy implications are drawn in

Section 6. Additionally, all proofs are in the Appendix.

2. The Model

Our model has one port authority and two container terminal operators. The

terminal operators provide shipping liners differential services, which may result from

different amounts of cranes and gantries uploading and unloading containers, distinct
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locations of terminals, or dissimilar storage facilities for cargos. Accordingly, the inverse

market demand functions faced by operators 1 and 2 are assumed to be respectively

p1 = 1 − q1 − bq2 and (1)

p2 = 1 − q2 − bq1, (2)

where pi is the price of unit cargo (e.g., Twenty Foot Equivalent Units, TEU) charged

by operator i, and qi is the amount of cargo handled by operator i, i = 1, 2. Parameter

b ∈ (0, 1) represents the service substitution degree of the operators. The larger b is,

the higher the service substitution degree is. Providing services to shipping liners incurs

costs. The total cost of managing terminals consists of a fixed and a variable parts.

The fixed cost refers to expenditures spent on equipments, such as cranes and gantries.

Denote Ki and γi the equipment level and the unit (rental) price of equipment for

operator i. Then, γiKi is operator i’s fixed cost. In contrast, let ciqi be operator i’s

variable cost, which changes with cargo numbers handled at rate ci with 1 > ci > 0

for i = 1, 2. The variable cost includes labor costs uploading and unloading cargos,

storage fees of cargos, etc. In sum, operator i’s total cost

Ci(qi) = ciqi + riKi, i = 1, 2. (3)

Without loss of generality, we assume that c2 ≥ c1. This means that operator 1 is at

least as efficient as operator 2. Since riKi is independent of operator i’s service prices

and cargo amounts, neglecting riKi in (3) will not alter our results qualitatively. Thus,

for simplicity, (3) can be reduced to

Ci(qi) = ciqi. (4)

In our model, the port authority can offer terminal operators three types of con-

cession contracts. The first charges terminal operators a fixed fee, f > 0, which is

independent of the cargo amount handled. The second charges operators a unit fee, r,

for per unit cargo uploading or unloading. The third is a two-part tariff scheme, (r, f),
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which combines the previous two. That is, the port authority collects both fixed and

unit fees from the operators. Here, for simplicity, we ignore overcharge in the con-

gested period. Accordingly, the authority’s revenues under the fixed-fee, unit-fee, and

two-part tariff schemes are 2f, r(q1 + q2), and 2f + r(q1 + q2), respectively. Our land-

lord port authority could be a local government or an international port management

company, pursuing fee-revenue maximization.1

On the other hand, terminal operators are assumed to maximize their profits,

which vary with contract types offered. Given two-part tariff scheme (r, f), profits of

operators 1 and 2 are

π1 = p1q1 − (c1 + r)q1 − f = [1 − q1 − bq2]q1 − (c1 + r)q1 − f and (5)

π2 = p2q2 − (c2 + r)q2 − f = [1 − q2 − bq1]q2 − (c2 + r)q2 − f (6)

by (1), (2) and (4). Under the unit-fee scheme, operators’ profit functions are (5)-(6)

with f = 0. Under the fixed-fee scheme, operators’ profit functions are (5)-(6) with

r = 0. Like traditional firm theory, terminal operators could compete in cargo amounts

(the Cournot mode) or service prices (the Bertrand mode). Since the two modes lead

to similar qualitative results, we present quantity competition results only. And the

price competition outcomes are available upon request.

Our sequential game proceeds as follows. First, the port authority announces a fee

scheme to maximize her revenues. Second, given the fee scheme, terminal operators 1

and 2 simultaneously and independently choose their optimal cargo amounts to maxi-

mize profits. Because this is a complete information game, the subgame perfect Nash

equilibrium (hereafter SPNE) can be obtained through backward induction. We first

derive terminal operators’ equilibrium cargo amounts and service prices in Section 3,

given a concession contract. Then, optimal concession contracts for the port authority

1When the port authority only has fee income, and her cost (e.g., the expenditure of constructing

and managing infrastructures of ports) is independent of the fee type, maximizing fee revenues is

equivalent to maximizing profits.
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are acquired in Section 4.

3. Optimal Behaviors of Terminal Operators

Given each of the three fee schemes, the associated optimal behaviors of terminal

operators are derived in the following subsections.

3.1. Under Two-Part Tariff Scheme

Given two-part tariff (r, f), operators 1 and 2 choose optimal cargo amounts

(q∗1, q∗2) to solve the following problems.

max
q1≥0

π1 = [1 − q1 − bq2]q1 − (c1 + r)q1 − f and

max
q2≥0

π2 = [1 − q2 − bq1]q2 − (c2 + r)q2 − f.

The associated Kuhn-Tuker conditions for (q∗1 , q∗2) are

∂π1

∂q1

= 1 − 2q1 − bq2 − (c1 + r) ≤ 0, q1 ·
∂π1

∂q1

= 0, and (7)

∂π2

∂q2
= 1 − 2q2 − bq1 − (c2 + r) ≤ 0, q2 ·

∂π2

∂q2
= 0. (8)

By solving the equality parts of (7)-(8), i.e, ∂πi

∂qi
= 0 for i = 1, 2, we obtain2

q∗1 =
1 − r

2 + b
+

[bc2 − 2c1]

4 − b2
and (9)

q∗2 =
1 − r

2 + b
+

[bc1 − 2c2]

4 − b2
. (10)

When equilibrium cargo amounts are positive, the second-order and stability conditions

hold because ∂2πi

∂q2

i

= −2 < 0 and ∂2πi

∂q2

i

·
∂2πj

∂q2

j

− ∂2πi

∂qj∂qi
·

∂2πj

∂qi∂qj
= (4 − b2) > 0 for i, j =

2Under some concession contracts, two operators, especially operator 2, may not rent the terminals.

Accordingly, we need to consider both interior (q∗i > 0) and boundary (q∗i = 0) solutions. These

solutions can be derived from (9)-(10). For instance, q∗2 > 0 if r <
2(1−c2)−b(1−c1)

2−b
, while q∗2 = 0 if

r = 2(1−c2)−b(1−c1)
2−b

. Thus, we focus on (9)-(10). More details can be found in (13) and footnote 3.
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1, 2. Substituting (9)-(10) into (1)-(2) yields equilibrium prices charged by terminal

operators 1 and 2,

p∗1 =
1 + r(1 + b)

2 + b
+

[c1(2 − b2) + c2b]

4 − b2
> 0 and (11)

p∗2 =
1 + r(1 + b)

2 + b
+

[c2(2 − b2) + c1b]

4 − b2
> 0. (12)

To have nonnegative equilibrium cargo amounts for both operators, the following con-

ditions are assumed.3

c2 < c̄2 ≡ 1 −
b(1 − c1)

2
and r ≤ r̄ ≡

2(1 − c2) − b(1 − c1)

2 − b
. (13)

Inequalities in (13) say that operator 2’s marginal service cost (c2) and port authority’s

unit fee (r) cannot be too large so that both operators will handle nonnegative cargo

amounts. In particular, if r = r̄ > 0, we have q∗2 = 0. That is because operator 2

will exit the market if the authority charges unit fee too high. By (9)-(12), terminal

operator i’s profit is

π∗
i ≡ (q∗i )

2 − f, i = 1, 2. (14)

3.2. Under Unit-Fee Scheme

Given unit fee r, operators 1 and 2 choose optimal cargo amounts (qu
1 , qu

2 ) to solve

the following problems.

max
q1≥0

π1 = [1 − q1 − bq2]q1 − (c1 + r)q1

max
q2≥0

π2 = [1 − q2 − bq1]q2 − (c2 + r)q2.

The associated first-order conditions are the same as (7)-(8). Accordingly, equilibrium

cargo amounts (qu
1 , qu

2 ) and equilibrium prices (pu
1 , pu

2) satisfy

qu
i = q∗i and pu

i = p∗i , i = 1, 2. (15)

3The condition of r ≤ 2(1−c1)−b(1−c2)
2−b

implies q∗1 ≥ 0, while the condition of r ≤ 2(1−c2)−b(1−c1)
2−b

suggests q∗2 ≥ 0. Since c2 ≥ c1, the later condition implies the former.
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Similarly, to have nonnegative qu
i , conditions in (13) are imposed. However, operator

i’s profit at equilibrium is

πu
i ≡ (qu

i )2, i = 1, 2. (16)

3.3. Under Fixed-Fee Scheme

Given fixed fee f, operators 1 and 2 choose optimal cargo amounts (qf
1 , qf

2 ) to

solve the following problems.

max
q1≥0

π1 = [1 − q1 − bq2]q1 − c1q1 − f

max
q2≥0

π2 = [1 − q2 − bq1]q2 − c2q2 − f.

The associated first-order conditions are the same as (7)-(8) with r = 0. Thus, we have

qf
1 =

1

2 + b
+

[bc2 − 2c1]

4 − b2
and (17)

qf
2 =

1

2 + b
+

[bc1 − 2c2]

4 − b2
. (18)

It is worthy to mention that qf
i > 0, i = 1, 2, under the first condition in (13). The

equilibrium prices charged by operators 1 and 2 are respectively

pf
1 =

1

2 + b
+

[c1(2 − b2) + c2b]

4 − b2
> 0 and

pf
2 =

1

2 + b
+

[c2(2 − b2) + c1b]

4 − b2
> 0.

Accordingly, terminal operator i’s equilibrium profit equals

πf
i ≡ (qf

i )2 − f, i = 1, 2. (19)

4. Optimal Concession Contracts

In the following subsections, we will derive port authority’s optimal fee choices and

compare her equilibrium revenues in different schemes. Then optimal fee scheme(s)

with maximum revenues can be uncovered.
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4.1. Optimal Two-Part Tariff Scheme

Given (q∗1 , q∗2, π∗
1, π∗

2) in (9), (10) and (14), the port authority will choose (r∗, f ∗)

to solve the problem of

max
r, f

2f + r(q∗1 + q∗2)

s.t. 0 ≤ r ≤ r̄, π∗
1 ≥ 0, π∗

2 ≥ 0, f ≤ min{π∗
1, π∗

2}. (20)

Constraint 0 ≤ r ≤ r̄ from (13) is to guarantee both operators handling nonnegative

cargo amounts. Condition π∗
i ≥ 0 is so-called the individual rationality constraint for

operator i, under which the operator is willing to rent terminals from the authority to

earn nonnegative profits. Without loss of generality, each operator’s minimum required

profit is assumed to be zero. Our results will not change qualitatively if operators’

minimum required profits become positive. They are available upon request. Finally,

since π∗
i is the maximum amount operator i is willing to pay, the fixed fee set by

the port authority should not exceed operators’ willingness to pay. That is why the

condition of f ≤ min{π∗
1, π∗

2} is imposed. By solving (20), we obtain the followings.

Lemma 1. Suppose that conditions in (13) hold. Given operators’ optimal cargo

amounts (q∗1, q∗2) and equilibrium profits (π∗
1, π∗

2), the optimal two-part tariff scheme

(r∗, f ∗) is given below.

(i) If c2 ≤ ĉ2, we have r∗ = 1
(4b+6)

{(2 + 2b) + c2b2

(2−b)
− (4+2b−b2)c1

(2−b)
} > 0, f ∗ = 1

2
(q∗2)

2 > 0,

and q∗i > 0 for i = 1, 2, where ĉ2 = 1
b+6

[(4 − 2b) + c1(3b + 2)] with c1 < ĉ2 < c̄2.

Accordingly, equilibrium fee revenue under the scheme equals

R∗ = 2f ∗ + r∗(q∗1 + q∗2) ≡ 2f ∗ + r∗
[

(2 − 2r∗)

(2 + b)
−

(2 − b)(c1 + c2)

(4 − b2)

]

. (21)

(ii) If ĉ2 < c2 < c̄2, we have r∗ = r̄ = 2(1−c2)−b(1−c1)
2−b

, f ∗ = 0, and q∗2 = 0. Accordingly,

equilibrium fee revenue under the scheme equals

R∗ = r̄q∗1 =
(c2 − c1)[2(1 − c2) − b(1 − c1)]

(2 − b)2
. (22)
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Lemma 1 shows that operators’ marginal service costs and their service differentia-

tion degree are important in deciding port authority’s optimal two-part tariff contracts.

When operator 2’s marginal cost is small (i.e., c2 ≤ ĉ2), both operators will rent termi-

nals from the port authority. However, since operator 2 is less efficient than operator

1, it will handle fewer cargos and earn fewer profits than operator 1. Thus, operator

2 is willing to pay smaller fixed fee than operator 1. And the port authority will use

operator 2’s willingness to pay as her optimal fixed fee. Moreover, optimal unit fee will

be less than its upper bound (r̄) due to small c2. That is what Lemma 1(i) shows.

In contrast, if operator 2’s marginal service cost is large (i.e., c2 > ĉ2), the operator

will have little gain and rent no terminal from the port authority. Thus, operator 2

handles zero cargo and earns zero profit. Because the minimum of operators’ willingness

to pay for fixed fee is zero, the port authority charges zero fixed fee. To maximize

revenues, the port authority will charge operator 1 as large unit fee as possible. That

is what Lemma 1(ii) demonstrates.

4.2. Optimal Unit-Fee Scheme

Given (qu
1 , qu

2 , πu
1 , πu

2 ) in (15) and (16), the port authority will choose unit fee ru

to solve the problem of

max
r

r(qu
1 + qu

2 )

s.t. 0 ≤ r ≤ r̄, πu
1 ≥ 0, πu

2 ≥ 0. (23)

The constraints in (23) are the same as those in (20) except that the upper bound for

fixed fee is deleted. By solving (23), we obtain the followings.

Lemma 2. Given terminal operators’ optimal cargo amounts (qu
1 , qu

2 ) and equilibrium

profits (πu
1 , πu

2 ), port authority’s optimal unit fee ru is determined below.

(i) If c2 ≤ ĉ2 = 4−2b+c1(2+3b)
b+6

, then ru = 1
2
− (c1+c2)

4
≥ 0 and qu

i > 0 for i = 1, 2.

10



Accordingly, port authority’s equilibrium fee revenue under the scheme is

Ru = ru(qu
1 + qu

2 ) =
1

2(2 + b)
[1 −

(c1 + c2)

2
]2. (24)

(ii) If ĉ2 < c2 < c̄2, then ru = r̄ = 2(1−c2)−b(1−c1)
2−b

, qu
2 = 0, and port authority’s

equilibrium fee revenue under the scheme is

Ru = r̄qu
1 =

(c2 − c1)[2(1 − c2) − b(1 − c1)]

(2 − b)2
= R∗ in (22). (25)

As in Lemma 1, Lemma 2 displays that port authority’s optimal unit fee depends

on both operators’ marginal service costs and their service differentiation degree. Since

the intuition behind Lemma 2 is similar to that of Lemma 1, it is omitted here. In

particular, both (22) and (25) suggest that for large c2, the port authority has the

same equilibrium fee revenues under the two-part tariff and unit-fee schemes. That is

because the authority will set zero fixed fee in the two-part tariff scheme and charge

the same unit fee in the two schemes.

4.3. Optimal Fixed-Fee Scheme

Given (qf
1 , qf

2 ) in (17)-(18) and (πf
1 , πf

2 ) in (19), the port authority will choose f f

to solve the problem of

max
f

2f

s.t. πf
1 ≥ 0, πf

2 ≥ 0, f ≤ min{πf
1 , πf

2}. (26)

The constraints in (26) are the same as those in (20) except that the upper bound for

unit fee is deleted. By solving (26), we obtain the followings.

Lemma 3. Given terminal operators’ optimal cargo amounts (qf
1 , qf

2 ) and equilibrium

profits (πf
1 , πf

2 ), we have f f = 1
2
(qf

2 )2 and qf
i > 0 for i = 1, 2. Accordingly, equilibrium

fee revenue under the scheme equals

Rf = (qf
2 )2 = [

1

(2 + b)
+

(bc1 − 2c2)

(4 − b2)
]2. (27)
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Since operator 1 is at least as efficient as operator 2, it will handle more or equal

cargo amounts and earn higher or equal profits compared to operator 2. This suggests

that operator 2’s willingness to pay for the fixed fee is no greater than operator 1’s.

Thus, the port authority will use operator 2’s willingness to pay as the optimal fixed

fee. Furthermore, since both operators have positive profits at equilibria, they will rent

terminals from the port authority. That is the content of Lemma 3.

Finally, by comparing R∗, Ru and Rf , we obtain port authority’s optimal conces-

sion contracts as follows.

Proposition 1. (i) Suppose c2 ≤ ĉ2 = 4−2b+c1(2+3b)
b+6

. Then we have Rf ≤ Ru, Rf ≤ R∗

and R∗ ≥ (≤) Ru iff G ≥ (≤) 0, where G is defined in (30). That is, either the

two-part tariff or the unit-fee scheme is preferred.

(ii) Suppose ĉ2 < c2 < c̄2. Then we have Ru = R∗ and R∗ ≥ Rf . Thus, the two-part

tariff and the unit-fee schemes are equally favored.

Proposition 1 demonstrates that the port authority will select either the two-part

tariff or the unit-fee scheme, depending on terminal operators’ marginal service costs

and their service differentiation level. When operator 2’s marginal service costs are

small, the two-part tariff or the unit-fee scheme would be preferred. When operator

2’s marginal costs are large, the two-part tariff and unit-fee schemes would generate

the same revenues at equilibria and are equally favored. These outcomes are explained

below.

First, we compare the fixed-fee and unit-fee schemes under small c2. Equations

(24) and (27) imply

Ru − Rf = ru(qu
1 + qu

2 ) − (qf
2 )2.

We can show ru ≥ qf
2 and (qu

1 + qu
2 ) ≥ qf

2 . This means that port authority’s optimal

unit fee is large, and both operators handle more cargos under the unit-fee scheme

than operator 2 does under the fixed-fee scheme. Thus, the unit-fee contract will bring
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higher revenues to the port authority, suggesting that the unit-fee is better than the

fixed-fee scheme. Next, by (21) and (27),

R∗ − Rf = (q∗2)
2 + r∗(q∗1 + q∗2) − (qf

2 )2.

Since qf
2 ≥ q∗2 by (10) and (18) for all unit-fee values (r), we have (qf

2 )2 ≥ (q∗2)
2. This

implies that fixed-fee revenues collected from the fixed-fee scheme are no fewer than

those from the two-part tariff scheme. However, revenues from the two-part tariff

scheme contain the unit-fee and fixed-fee parts, and the former outweighs the latter.

That is because more efficient operator 1 handles a larger amount of cargos under

the two-part tariff scheme and pays a larger amount of unit fees, but revenues under

the fixed-fee scheme are unaffected by operator 1’s equilibrium cargo amount.4 This

implies that the two-part tariff scheme is preferred to the fixed-fee scheme.

Then, it remains to compare the two-part tariff and unit-fee schemes. By (21) and

(24),

R∗ − Ru = (q∗2)
2 + r∗(q∗1 + q∗2) − ru(qu

1 + qu
2 ).

We can obtain r∗ ≤ ru and (q∗1 +q∗2) ≥ (qu
1 +qu

2 ) by c2 ≤ ĉ2.
5 This implies that the port

authority will charge lower unit fee under the two-part tariff scheme than under the

unit-fee scheme. But both terminal operators will handle more cargos under the two-

part tariff scheme. To judge relative sizes of unit-fee revenues under the two schemes,

we need to know the sign of [r∗(q∗1 + q∗2) − ru(qu
1 + qu

2 )]. By some calculations, we have

r∗(q∗1 + q∗2) − ru(qu
1 + qu

2 ) =
(ru − r∗)

2 + b
[2(ru + r∗) − 2 + c1 + c2] ≤ 0

because 2(ru + r∗) − 2 + c1 + c2 = −1
2b+3

+ c2(6+b)
2(2−b)(2b+3)

− (3b+2)c1
2(2−b)(2b+3)

≤ 0 by c2 ≤ ĉ2. This

suggests that the port authority will collect smaller unit-fee revenues under the two-

part tariff scheme. Nevertheless, if fixed-fee revenues under the two-part tariff scheme

4We can show R∗ −Rf = r∗[q∗1 + b
2+b

q∗2 −
q

f
2

2+b
] ≥ 0 because q∗1 + b

2+b
q∗2 −

q
f
2

2+b
= (4b+6)r∗

2(2+b)2 > 0. Since

q∗2 ≤ q
f
2 , the outcome of R∗ ≥ Rf must be due to large enough q∗1 .

5That is because r∗ ≥ (≤) ru iff c2 ≥ (≤) ĉ2, and (q∗1 + q∗2) − (qu
1 + qu

2 ) = 2(ru
−r∗)

2+b
≥ (≤) 0 iff

c2 ≤ (≥) ĉ2.
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are large enough, this scheme will still be preferred. Otherwise, the unit-fee scheme

will be chosen. That is what Proposition 1(i) states.

Two numerical examples are provided here to demonstrate Proposition 1(i) further.

Suppose b is close to 1 and c1 = 0.1. Then we have ĉ2 = 0.357. By taking c2 = 0.2 < ĉ2,

we can obtain G ≈ 0.010116 > 0. This implies R∗ > Ru. In contrast, if b is close to zero

and c1 = 0.1. We have ĉ2 = 0.7. By taking c2 = 0.7, we can obtain G ≈ −0.000373 < 0.

This suggests R∗ < Ru. In the first example, large b leads to small ĉ2, hence a small

range for c2. Since operator 2’s marginal service costs are small, it can handle large

amounts of cargos. Accordingly, fixed-fee incomes would outweigh unit-fee incomes

under the two-part tariff scheme. And the two-part tariff contract is preferred. In

contrast, in the second example, small b causes large ĉ2. Because operator 2’s marginal

service costs can be large, it will handle fewer cargos. Then the port authority cannot

collect large fixed-fee revenues under the two-part tariff scheme. Accordingly, the unit-

fee contract is favored.

When c2 is large, the port authority will use the unit-fee upper bound (r̄) as

optimal unit fee under both the two-part tariff and unit-fee schemes, and set zero fixed

fee in the two-part tariff scheme as shown by Lemma 1(ii) and Lemma 2(ii). Thus, the

authority will have the same revenues under the two-part tariff and unit-fee schemes.

Then, it remains to compare the fixed-fee and two-part tariff schemes. By (22) and

(27),

R∗ − Rf = r̄q∗1 − (qf
2 )2.

We can illustrate r̄ ≥ qf
2 and q∗1 ≥ qf

2 by ĉ2 < c2 < c̄2. This means that the unit fee

under the two-part tariff scheme is large, and operator 1 would handle more cargos

under the two-part tariff than operator 2 would under the fixed-fee scheme. That

is because operator 2’s high marginal service costs result in fewer cargos handled.

Accordingly, we have R∗ ≥ Rf , hence the two-part tariff and the unit-fee schemes are

equally favored. That is the content of Proposition 1(ii).

14



Finally, we discuss a special and interesting case of Proposition 1, i.e., two terminal

operators having symmetric costs, c1 = c2 = c. Then Lemma 1(ii) and Lemma 2(ii)

would not occur, because ĉ2 > c1 is shown in Lemma 1(i) and to have c1 < ĉ2 < c2

and c1 = c2 hold together is impossible. By simple calculations, we can acquire R∗ =

(1−c)2

2b+3
, Ru = (1−c)2

2(2+b)
, and Rf = (1−c)2

(2+b)2
. Therefore, R∗ > Ru > Rf and the outcome is

summarized below.

Corollary 1. Suppose c1 = c2 = c. Then the two-part tariff scheme will be the best

concession contract for the port authority.

When terminal operator 2 becomes as efficient as operator 1, its equilibrium cargo

amounts and profits would increase. Then the port authority can earn more fixed-fee

incomes under the two-part tariff scheme, and the two-part tariff contract becomes

superior to others.

5. Properties of Optimal Concession Contracts

As shown in Proposition 1, the port authority would favor the two-part tariff or the

unit-fee contract. It is worthy to know how the two contracts are affected by model’s

parameters, such as operators’ marginal service costs and their service differentiation

degree. First, we present the properties of optimal two-part tariff and unit-fee schemes

under small c2.

Lemma 4. (i) Suppose c2 ≤ ĉ2. Given optimal two-part tariff contract (r∗, f ∗) derived

in Lemma 1(i), we have the followings.

(ia) ∂r∗

∂c1
= −(4+2b−b2)

(4b+6)(2−b)
< 0 and ∂f∗

∂c1
= q∗2[

−1
2+b

· ∂r∗

∂c1
+ b

4−b2
] > 0.

(ib) ∂r∗

∂c2
= b2

(4b+6)(2−b)
> 0 and ∂f∗

∂c2
= q∗2[

−1
2+b

· ∂r∗

∂c2
− 2

4−b2
] < 0.

(ic) ∂r∗

∂b
= 4(4−4b+b2)−8c1(2+b)+2bc2(b+12)

(4b+6)2(2−b)2
≥ 6b2

(4b+6)2(2−b)2
> 0 and ∂f∗

∂b
= q∗2[

−(2b+12)
(4b+6)(2+b)2

+

c1(3b3+18b2+44b+48)+c2(−2b3−44b2−73b+2)
(4b+6)(2+b)2(2−b)2

] < 0.

(ii) Suppose ĉ2 < c2 ≤ c̄2. Given optimal unit-fee contract ru derived in Lemma 2(i),
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we have ∂ru

∂c1
= ∂ru

∂c2
= −1/4 < 0 and ∂ru

∂b
= 0.

Under two-part tariff scheme (r∗, f ∗), when operator 1’s marginal service costs (c1)

rise, it will handle fewer cargos but operator 2 will handle more because their services

are strategic substitutes. The former will lead to lower unit-fee incomes, while the

latter will bring higher fixed-fee incomes for the port authority. Since
∂q∗

1

∂r
= −1

2+b
< 0

implied by (9), the port authority can lower the unit fee to offset the effect of operator

1’s handling fewer cargos. That is what Lemma 4(ia) states. In contrast, if operator

2’s marginal costs (c2) rise, it will handle fewer cargos but operator 1 will handle

more. The former will lead to lower fixed-fee revenues, while the latter will bring

higher unit-fee revenues for the port authority. To compensate the loss on the fixed-

fee part, the port authority would raise the unit fee. That is displayed in Lemma

4(ib). When the service differentiation degree (b) between the two operators increases,

the market becomes more competitive. Thus, operator 2 will handle fewer cargos due

to less efficiency. Accordingly, port authority’s fixed-fee revenues will decrease. To

compensate this loss, the authority will raise the unit fee. That is claimed by Lemma

4(ic).

Next, when the unit-fee scheme is chosen and operator i’s marginal service costs

rise, the operator will handle fewer cargos. The port authority can only lower the unit

fee to counter the cargo-amount decreasing. Moreover, the optimal unit fee is indepen-

dent of operators’ service differentiation level. That is what Lemma 4(ii) demonstrates.

Finally, for large c2, we have the followings.

Lemma 5. (i) Suppose ĉ2 < c2 < c̄2. Given optimal two-part tariff or unit fee

(r̄, f ∗ = 0) derived from Lemma 1(ii) or Lemma 2(ii), we have ∂r̄
∂c1

= b
2−b

> 0, ∂r̄
∂c2

=

−2
2−b

< 0, ∂r̄
∂b

= 2b(1−c2)+(1−c1)(−2+b−b2)
(2−b)2

< 0.

Recall that r̄ is the maximum unit fee the port authority can charge, and is derived

from the constraint of non-negative equilibrium cargo amounts of operator 2. Thus, if
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operator 1’s marginal costs increase, operator 2 will handle more cargos and the upper

bound for the unit fee will rise. In contrast, if operator 2’s marginal costs increase, it

will handle fewer cargos and the upper bound for the unit fee will fall. Finally, when

the service substitution degree between the two operators increases, operator 2 will

handle fewer cargos due to tighter competition. Thus, the upper bound for the unit

fee will fall.

6. Conclusions and Policy Implications

This paper investigates optimal concession contracts for a landlord port author-

ity trying to maximize her fee revenues. A two-stage game proceeds as follows. The

port authority first decides a contract, then two terminal operators choose their cargo

amounts or service prices independently and simultaneously. The contracts consid-

ered include fixed-fee, unit-fee, and two-part tariff schemes. We find that based on

terminal operators’ marginal service costs and their service differentiation levels, the

port authority will choose between the two-part tariff and the unit-fee contracts. In

particular, if two operators’ marginal service costs are the same, the authority would

prefer the two-part tariff scheme. Moreover, we explore how optimal concession con-

tracts are affected by operators’ marginal service costs and their service differentiation

degree. Once data of these variables are available, port authority’s optimal concession

contracts can be identified.

There are two possible extensions for this paper. First, uncertainty can be added

to our setup. In the real world, shocks from the demand and cost sides often exist.

Thus, it is worthy to explore how uncertainty affects port authorities’ optimal conces-

sion contracts and terminal operators’ pricing behaviors. Second, risk sharing among

agents is a significant issue especially when they face uncertainty. Therefore, this issue

together with uncertainty can be examined in the future.

Appendix
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Proof of Lemma 1: (i) For a given (r, f), we have q∗1 − q∗2 = (2+b)(c2−c1)
4−b2

≥ 0 by (9)-

(10). This implies q∗1 ≥ q∗2 and π∗
1 ≥ π∗

2 . Thus, f ∗ = min{π∗
1, π∗

2} = π∗
2 = (q∗2)

2 − f ∗,

suggesting f ∗ = 1
2
(q∗2)

2. Accordingly, π∗
1 = (q∗1)

2 − 1
2
(q∗2)

2 ≥ 0 and π∗
2 = 1

2
(q∗2)

2 ≥ 0.

Then, problem of (20) can be reduced to

maxr (q∗2)
2 + r(q∗1 + q∗2)

s.t. 0 ≤ r ≤ r̄.

Define Lagrangian function L = (q∗2)
2+r(q∗1+q∗2)−λ[r−r̄]. The associated Kuhn-Tucker

conditions are

∂L

∂r
= 2q∗2

∂q∗2
∂r

+ r(
∂q∗1
∂r

+
∂q∗2
∂r

) + q∗1 + q∗2 − λ ≤ 0, r ·
∂L

∂r
= 0, (28)

∂L

∂λ
= r̄ − r ≥ 0, λ

∂L

∂λ
= 0. (29)

There are two possible solutions as follows.

Case 1: Suppose λ = 0. Then we can find r∗ > 0 meeting the condition of ∂L
∂r

=

1
(2+b)2

[(2+2b)− r(4b+6)− c1(4+2b−b2)
(2−b)

+ c2b2

(2−b)
] = 0 by (28). The second-order condition

holds because ∂2L
∂r2 = −(4b+6)

(2+b)2
< 0. Thus, r∗ = 1

(4b+6)
{(2 + 2b) − (4+2b−b2)c1

(2−b)
+ c2b2

(2−b)
} > 0.

It remains to check whether r∗ ≤ r̄. By some calculations, we have

r∗ − r̄ =
1

(2 − b)(4b + 6)
[2b2 − 8 − c1(3b

2 + 8b + 4) + c2(b
2 + 8b + 12)].

Thus, r∗ ≤ r̄ if c2 ≤ ĉ2 ≡
1

(b+6)
[c1(3b + 2) + 2(2− b)] with c1 < ĉ2 < c̄2. That is because

c̄2 − ĉ2 = (4−b2)(1−c1)
2(6+b)

> 0 and ĉ2 − c1 = (4−2b)(1−c1)
6+b

> 0. Under the circumstance, q∗1 =

1−r∗

2+b
+ bc2−2c1

4−b2
> 0, q∗2 = 1−r∗

2+b
+ bc1−2c2

4−b2
> 0, f ∗ = 1

2
(q∗2)

2 > 0, and R∗ = (q∗2)
2+r∗(q∗1+q∗2).

Case 2: Suppose λ > 0. Then we have r∗ = r̄ by (29), which occurs when c2 > ĉ2.

Under the circumstance, we have q∗1 = (2+b)(c2−c1)
4−b2

, q∗2 = 0, f ∗ = 0, and R∗ = r̄q∗1 =

(c2−c1)[2(1−c2)−b(1−c1)]
(2−b)2

. 2

Proof of Lemma 2: When qu
i ≥ 0, implied by r ≤ r̄, we have πu

i ≥ 0 for i = 1, 2. Thus,
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problem (23) can be reduced to

max
r

r(qu
1 + qu

2 )

s.t. 0 ≤ r ≤ r̄.

Denote L = r(qu
1 + qu

2 ) − λ[r − r̄] the Lagrange function. Then the associated Kuhn-

Tucker conditions are

∂L

∂r
= r(

∂qu
1

∂r
+

∂qu
2

∂r
) + qu

1 + qu
2 − λ ≤ 0, r ·

∂L

∂r
= 0,

∂L

∂λ
= r̄ − r ≥ 0, λ

∂L

∂λ
= 0.

By similar arguments adopted by Lemma 1, we can obtain ru = 1
2
− (c1+c2)

4
> 0 if

c2 ≤ ĉ2. Therefore, qu
1 = 1

(2+b)
[2+c1+c2

4
+ bc2−2c1

(2−b)
] > 0, qu

2 = 1
(2+b)

[2+c1+c2
4

+ bc1−2c2
(2−b)

] > 0,

and Ru = 1
2(2+b)

[1 − (c1+c2)
2

]2. For c2 > ĉ2, we have ru = r̄, qu
2 = 0, Ru = r̄qu

1 =

(c2−c1)[2(1−c2)−b(1−c1)]
(2−b)2

. 2

Proof of Lemma 3: Since qf
i > 0, we have πf

i = (qf
i )2 ≥ 0 by (19). By (17) and (18), we

have qf
1 − qf

2 = (2+b)(c2−c1)
4−b2

≥ 0. Then, qf
1 ≥ qf

2 and πf
1 ≥ πf

2 . Thus, f = min{πf
1 , πf

2} =

πf
2 = (qf

2 )2 − f, implying f f = 1
2
(qf

2 )2. Accordingly, πf
1 = (qf

1 )2 − 1
2
(qf

2 )2 ≥ 0 and

πf
2 = 1

2
(qf

2 )2 ≥ 0. At f f , we have Rf = (qf
2 )2 = [ 1

2+b
+ bc1−2c2

4−b2
]2. 2

Proof of Proposition 1: (i) By (24) and (27), we have

Rf − Ru = (qf
2 )2 − ru(qu

1 + qu
2 ).

Since (qf
2 − ru) = 1

4(4−b2)
[2b(b− 2) + c1(4 + 4b− b2)− c2(4 + b2)] ≤ 2b(b−2)(1−c1)

4(4−b2)
< 0 and

qf
2 − (qu

1 + qu
2 ) = (b+2)(c1−c2)

2(4−b2)
≤ 0 by c2 ≥ c1, we have Rf ≤ Ru. Moreover, by (21), (27)

and some calculations, we have

R∗ − Rf = (q∗2)
2 + r∗(q∗1 + q∗2) − (qf

2 )2

= r∗[q∗1 +
b

2 + b
q∗2 −

r∗

(2 + b)2
] =

(2b + 3)(r∗)2

(2 + b)2
≥ 0

due to qf
2 = q∗2 + r∗

2+b
. This suggests Rf ≤ R∗. On the other hand, by (21) and (24), we

have

R∗ − Ru = G ≥ (≤) 0 iff G ≥ (≤) 0,
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where

G =
2b2 + 7b + 6

2(2 + b)2(2b + 3)2
−

F 2

4(2 + b)2(2b + 3)
−

c2(b
2 + 4b + 6)(bc1 − 2c2)

(2 + b)2(2 − b)2(2b + 3)

+
(c1 + c2)

2(2 + b)(2b + 3)
{1 +

[c2(−2b2 − b − 6) + c1(−2b2 + 7b + 10)]

4(2 − b)
}

+
(bc1 − 2c2)[2(4 − b2) + c1(b + 1)(b + 4)]

(2 + b)2(2 − b)2(2b + 3)
(30)

could be positive with F = −c2b2

2−b
+ c1(4+2b−b2)

2−b
.

(ii) Since Ru = R∗ by (25), we need only compare R∗ and Rf . By (22) and (27), we

have

R∗ = r̄q∗1 and Rf = (qf
2 )2.

By simple calculations, we have

r̄ − qf
2 =

2(1 − c2) − b(1 − c1)

2 − b
−

1

2 + b
−

bc1 − 2c2

4 − b2
=

1 + b

2 + b
[1 +

bc1 − 2c2

2 − b
]

>
1 + b

2 + b
{1 +

bc1

2 − b
−

2

2 − b
[−1 +

b(1 − c1)

2
]}

=
2(1 + b)

2 + b
[1 +

bc1

2 − b
] > 0

by c2 < c̄2 = 1 − b(1−c1)
2

, and

q∗1 − qf
2 =

(2 + b)(c2 − c1)

4 − b2
−

1

2 + b
−

bc1 − 2c2

4 − b2
=

[c2(4 + b) − c1(2 + 2b)]

4 − b2
−

1

2 + b

>
4 + b

(4 − b2)
·
[4 − 2b + c1(2 + 3b)]

(6 + b)
−

(2 + 2b)c1

(4 − b2)
−

1

(2 + b)

=
(1 − c1)

6 + b
> 0

by c2 > ĉ2 = 4−2b+c1(2+3b)
6+b

. This then implies R∗ ≥ Rf . 2
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