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ABSTRACT 

This paper describes the generation of a web application for finding shortest hyper-paths on 

the public transportation system in Ciudad Universitaria Campus (CU) of UNAM (Universidad 

Nacional Autónoma de México). The considered transportation modes are bus, bicycle and 

waking; all of them are free. Bus’ schedules don’t exist, just frequencies are known. Hence, 

by means of hyper-paths analysis, expected travelled time on bus can be obtained; this time 

includes waiting time for the bus at stops and considers that multiple bus-lines can be useful 

to a user at a stop. This expected waiting time at stop in not included in other shortest path 

web applications. We also consider the number of modal transfers, because any user 

establishes a maximum number of modal transfers in a trip.  

 

We implemented the Shortest Viable Hyper-path Problem (SVHP) algorithm, by Lozano and 

Storchi (2002), which was adapted to the characteristics of the transportation modes within 

CU. The web implementation generates a set of paths (Pareto Optimal set) with different 

travel time and different number of modal transfer. Then, user can choose her/his path from 

that set according personal preferences. The web application has a geographical display 

which facilitates user the choice from among multiple hyper-paths. 

 

Keywords: Hyper-graph, public transport, multimodal, web platform. 

INTRODUCCION 

As the vehicle fleet grows and the pollution and traffic increase, it is becoming more 

important changing the use of car to public transportation. Efficient public transportation is 
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important for boosting this transition, where the user has enough information on travel times 

and paths to reach her/his destination faster. Usually, schedules exist for public 

transportation, which facilitates users planning their paths. However travel time and waiting 

time at a bus stop are unknown in some cities due to the lack of schedules. At a stop, a user 

can choose a set of possible lines to take (for example, bus lines or metro lines), but he/she 

does not know when a bus of these lines will arrive, and what bus line will arrive first. 

 

Nowadays there are a variety of Web platforms that find shortest paths in multimodal 

networks such as Google Maps and Bing Maps, however shortest public transportation paths 

service is only available in cities where schedules exists. Some shortest path services have 

been implemented on multimodal networks using real-time information, such as PATH2Go 

(Zhang et al., 2011).  Actually, PATH2Go does not consider modal changes; its function is to 

compare different alternatives that the user has for moving from a source to a destination. 

The system proposed by Rehrl et al., (2007) considers mode changes and works similar to 

the travel assistance systems for private vehicles (commonly known as GPS). The iPhone 

application BayTriper  (Jariyasunant et al., 2011), the portals Goroo in Chicago, Hit the Road 

in Dublin and Trimet in Oregon are services that integrate multimodal paths and real time 

information. 

 

All these platforms require schedules to find estimated travel time, and they can find simple 

shortest paths when there are not schedules.  

 

We present a platform to find shortest hyper-paths in multimodal transport networks, 

considering that schedules are lacking for some modes, and the number of modal transfers 

requires be limited by the user.  So the user can choose her/his best path, from a set of 

hyper-paths with different travel time (which includes waiting time at stop) and different 

number of modal transfers, according personal preferences. Similar platforms are not 

reported in literature. The presented web application can contribute to a better use of the 

multimodal public transportation. 

 

The can produce better results when the public modes are not affected by congestion, i.e. 

they have dedicated lanes (BRT, Suburban Trains, Metro, bicycle and walking).  

 

In our case study (the Ciudad Universitaria Campus of the Universidad Nacional Autónoma 

de México, CU-UNAM), bus has a dedicated lane but it does not have schedules. Then, 

waiting time at stops can be estimated by using the frequencies of each line, by means 

hyper-path analysis. The following free public transportation modes are considered: bus 

(Pumabus), bicycle and walking. 

 

We assumed that each user has: her/his own opinion about advantages and disadvantages 

of each mode, her/his preferred modes, and her/his maximum number of tolerated modal 

transfers in her/his path.  For example, some people prefer bicycle over bus for short 

distances, because bicycle doesn't have waiting time at stops; other people prefer a 

combined use of bicycle and bus, where speed and comfort meet, and other people don’t like 

modal transfers.  
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Hence, we implemented the Shortest Viable Hyper-path Algorithm (SVHA), by Lozano and 

Storchi (2002), which was adapted to the characteristics of the transportation modes within 

CU. Our web implementation generates a set of paths (Pareto-Optimal set) with different 

travel time and different number of modal transfer. Then, user can choose her/his path from 

that set according personal preferences. The SVH algorithm find shortest viable hyper-paths 

in multimodal networks, where viable means that certain combinations of modes are 

respected in a path. 

 

The following sections show how to model a multimodal transportation network using hyper-

graphs and also present the developed tool for finding the shortest viable hyper-paths in CU-

UNAM. First, concepts on hyper-paths and viability in multimodal networks, and an 

introduction to the SVH algorithm are presented. Then, the case study characteristics are 

described, and the structure of the web application is presented. Later, examples of results 

from the web application are described. Finally, conclusions and references are included. 

MULTIMODAL HYPER-GRAPH AND HYPERPATH CONCEPTS 

Hyper-graphs and hyper-paths 

A hyper-graph is helpful to model public transportation networks because it allow represent 

waiting time at bus stops. Unlike digraphs whose arrows represent only a cost (distance, 

time, comfort, etc.), hyper-graphs also consider a probability at stops which is based on the 

frequency of those lines at a certain stop which are useful to user, called attractive set of 

lines (Lozano and Storchi, 2002). 

 

Some multimodal hyper-graph concepts, taken from Lozano and Storchi (2002) and Voloshin 

(2009), are presented below: 

 

A directed hyper-graph or h-graph is a pair H=(V,E) where V=(v1,v2...vn) is a set of nodes and 

E=(e1,e2... em) is a set of hyper-arcs. A h-arc Ee  is the couple e=(t(e),h(e)) where   Vet  is 

the set of tail nodes and   V,eh  is the set of head nodes. 

 

Let H be a hyper-graph. The forward star  HVu   is the set of arcs emerging from u and is 

defined by       .HVy|Eyu,=uFS   Furthermore, the backward star  HVu  is the set 

of arcs coming to u and is defined by       .HVy|Euy,=uBS   

Let H be a hyper-graph. A path, qod, connecting a source o and a destination d, is a 

sequence of nodes and h-arcs, qod=(o=t(e1 ),e1,t(e2 ),e2,... em,d), where    
i+i

ehet 
1

for 

i=1,2,...m − 1 and  .
m

ehd   

 

A hyper-path qod is the minimum set of acyclic paths pod such that destination d is connected 

to any node that belongs to pod. 
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Let L be the set of lines of a public mode r. Let Li be the subset of lines passing through node 

Ni  . The attractive set 
ii

LL'   is a set of lines to go from i to d such that at node i the 

user is willing to board the first vehicle of subset 
i

L'  which arrives. Each attractive set 
i

L'  

associates with a contained boarding h-arc ))'(,('
ii

ehie  , where )'(
i

eh  is the set of line-

stops at i, of the lines belonging to 
i

L' . 

Expected travel time (Lozano and Storchi, 2002) 

The following assumptions are made: passengers arrive randomly at every node stop, and 

always board the first vehicle of their attractive set, which arrives; and lines are statistically 

independent and vehicles of a line arrive at a node with exponential distribution (equal to the 

inverse of the line frequency). 
 

Let be 
j

  the frequency of the line 
ij

Ll   i.e., the frequency of some line lj that stops at 

node i. Then,   


i
j

ji

e'

=e'Φ   denotes the combined frequency attractive set;  
 

i

i

e'Φ
=e'w

1
 

represents the average waiting time of the attractive set at the stop i, for the attractive set 

i
L' ; and  

 
i

j

ij

e'Φ
=je'π


,  denotes de probability that the first vehicle arriving at stop i is of 

line 
i

Lj  . 

 

A hyper-arc has associated a waiting time    
ii

e'w=e'C  plus as many coefficients as the 

number of nodes that in  
j

e'h  i.e. the coefficients  j,e'π
i

   
j

e'hj   such 

that

 

  1=j,e'π
i

j
e'hj




.  

 

A value  iV
p

, which represents the expected travel time for going from the node i to d is 

associated with each hyper-path;  Vp(d)=0 and 

 

 

     

 

 

   



















arcboardinghe'jVj,e'π+e'w

ji,=ejV+ji,c

=iV
pi

j
e'hj

i

p

p  a is  if

   if

 

Viable multimodal hyper-paths and modal transfers 

Lozano and Storchi (2001) define a viable path as a path whose sequence of modes is 

feasible with respect to a set of constraints. They consider that the constrained modes 

depend on the specific structure and characteristics of the transportation network in a city. 

 

Lozano and Storchi (2002) indicate that the mode can be classified in several subset 

according the available modes of specific problem, here M is the set of modes, MM
i
 . 
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They proposed the following general classification: public rail modes (M1), private surface 

modes (M2), private modes with parking needs (M3), private modes without parking needs 

(M4), walking mode (M5) and modal transfer mode (M6). 

 

The following concepts are taken from Lozano and Storchi (2002):  

 

A multimodal hyper-graph is the triplet H= (N, E, M), where N is the set of nodes, E is the set 

of the h-arcs and M are modes associated with the h-arcs. 

 

A multimodal hyper-graph is composed of three types of h-arcs: boarding h-arcs, travel arcs 

and modal transfer arcs. 

 

A multimodal hyper-path is viable if the paths composing the hyper-path do not include more 

than one maximal mode-r-subpath for each 
v

Mr  . That is, the paths of a viable 

multimodal hyper-path do not use a constrained mode more than once. 

 

A wide explanation of multimodal viable paths and hyper-paths is presented in Lozano and 

Storchi (2001; 2002). 
 

The state s of a viable path is a key to indicate an admissible composition of the modes on 

the viable path (Lozano and Storchi, 2001). A path with an associated state is a viable path 

which has a specific sequence of used modes. The state is used to check viability of the 

paths obtained from the paths concatenation (Lozano and Storchi, 2001). Since a viable 

hyper-path is composed of a set of viable paths, each one with an associated state, then a 

state can also be associated with the viable path. This state indicates the specific sequence 

of the used modes in all of the paths composing the hyper-path (Lozano and Storchi, 2002). 

 

Lozano and Storchi (2002) define a hypertransition from states sz and sx to state s, as the 

specification of a state s which indicates the sequence of modes used in both the hyper-

paths of states sz and sx. They use a transition states diagram for representing states for 

viable paths, obtained from concatenation of h-arcs and arcs belonging to a set of modes, 

forming hyper-paths. 

 

Another important element, which had been considered in multimodal paths is that users 

don’t desire to make many changes of mode, so the number of modal transfers can be 

limited (Lozano and Storchi, 2001). 

Shortest Viable Hyper-path Algorithm (SVHA) 

The algorithm for the shortest viable hyper-path problem (SVHP), from Lozano and Storchi 

(2002), finds the viable hyper-paths with the minimum expected travel time, where the user 

does not have to execute more than k modal transfers. The solution is a set of shortest viable 

hyper-paths with modal transfer between o and k. These hyper-paths have different values 

associated with the following criteria: the expected travel time and the upper limit of modal 

transfer, so this set is a Pareto-optimal set (Lozano and Storchi, 2002). 
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The algorithm for the SVHP is formed of a main procedure which is a label correcting 

approach, a procedure for arc concatenation (for modes represented by arcs) and a 

procedure for h-arc concatenation (for modes represented by h-arcs). The procedure for arc 

concatenation calls a procedure for each mode; such procedures determine the state of the 

path, obtained by the concatenation of a state s path with an arc mode r. The procedure for 

h-arc concatenation calls a procedure for determining the state s resulting from the 

concatenation of the current hyper-path of state sz and the hyper-path of the h-arc 

concatenation sx; this procedure is based on the transition states diagram. Both procedures 

for concatenate arcs and h-arcs call procedure-states, which identifies the set of preferred 

states to s. The algorithm is explained in Lozano and Storchi (2002). 

CASE STUDY 

Area Description 

CU campus is located in the southern part of Mexico City, covering an area of 2.7 square 

kilometres. It has over 107,000 students, 20,000 academics and 25,000 workers. In 2007, 

the CU campus was declared a World Heritage Site by the United Nations Educational, 

Scientific and Cultural Organization (UNESCO). 

 

Respectively, Figure 1, Figure 2 and Figure 3 show the bus (Pumabús), bicycle and waking 

networks within CU Campus. All these transportation modes are free. The bus service 

includes 12 lines, 83 stops and three main stations (UNAM, 2009b). The bicycle service has 

12 borrowing modules and exclusive lanes (6 km). There are eight big free parking lots 

located at the stadium where students, academics and employees can park-and-ride to their 

destination using Pumabús or bicycle. 

 

The frequency of each bus line is known, and it changes along the day, so four periods are 

considered (morning, noon, evening and night). The bus service operates from 6:00 am to 

10:00 pm. 

Modes and viability 

Bicycle and waking modes can be represented by graphs, while bus service by hyper-

graphs. At a stop of Pumabús service, several lines can form the attractive set for a user, so 

the expected waiting time at this stop can be obtained for such user. 
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Figure 1 – Pedestrian network in CU Campus 

 

 
Figure 2 – Bicycle mode network in CU Campus 
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Figure 3 – Coverage of bus mode in CU Campus (12 lines) 

 

 
Figure 4 – State transitions for viable paths- CU Case Study. Adaptation from Lozano and Storchi (2002) 

The public transportation modes within the CU Campus are classified in four sets, i.e. exist 

MM
i
 for 41  i , as follows: 

1. M1: Motorized public transportation (“Pumabús”). 
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2. M2: pedestrian transportation. 

3. M3: Non motorized public transportation (bicycle). 

4. M4: Modal transfers. 

The viability of hyper-paths in CU Campus need to define the transitions of states associated 

to the hyper-paths, which must be based on the existing modes in the CU Campus.  

 

The transition states diagram, which indicates the feasible concatenations of arcs and h-arcs 

belonging to the mentioned four modes, is presented in Figure 4. The unique restricted mode 

is the bicycle, this can be used only once in a path.  

 

Additional restrictions can be included, like the length of the sub-paths for the bicycle and 

waking modes (according to personal physical condition).  

 

Finally the limit on the number of modal transfer must be included, given by the user. 

Main modifications of the SVHA for the CU Campus Case 

Our objective is to develop a web application for finding a viable hyper-path for any origin-

destination pair in CU Campus, such that: its expected time is minimum, it uses at least one 

of the mentioned four public transportation modes, and it contains the maximum number of 

modal transfers given by the user. A hyper-graph is used for bus mode, because the 

schedules of bus lines are unknown and just their frequencies are known. 

 

The web applications implemented the SVHA algorithm with a modification on the 

assignment of a state to the new path or hyper-path. In the SVHA, the procedures for arc and 

h-arc concatenation, call a procedure for determining the state of the new path or hyper-path. 

This procedure is now based on the transition states diagram shown in Figure 4, i.e., the 

procedure-states which identifies the set of preferred states to s, is based on Figure 4. This 

transition states diagram considers only bus, bicycle and waking modes, and that bicycle just 

can be used once in a trip. 

WEB APPLICATION STRUCTURE 

The web application of the shortest hyper-path algorithm is based on Open Source or free-to-

download tools. Apache is the web server and Tomcat is the application server, where all the 

frameworks, applications and tools live in. These servers are widely used around the world 

and also have an easy integration with the java code and the infrastructure which provides 

geographic information. The tools and frameworks, used for the web application, are 

described as follows: 

 The geographical extension of PostgreSQL, PostGIS, handles the database and 

shape (shp) files of maps.  



Web application for obtaining shortest hyper-paths in Ciudad Universitaria-UNAM 
LÓPEZ, David; LOZANO, Angélica; GONZÁLEZ, Héctor; GUZMÁN, Alejandro  

 

13
th
 WCTR, July 15-18, 2013 – Rio de Janeiro, Brazil 

 
10 

 Geoserver reads the geodatabase stored in PostgreSQL, in order visualize it as a 

map.  

 OpenLayers integrates and manages the Geoserver shape files and the web map 

services (Google Maps or Open Street Maps).  

 Communication between user and application was build using framework Struts2 

which implements the design pattern Model View Controller, as illustrated in Figure 5. 

The core of Struts2 is a filter known as FilterDispatcher, which is the entry point to the 

framework. All the Actions, like setting initial and final nodes in the algorithm, are 

executed from the FilterDispatcher. The Actions are responsible classes of the logic 

that serves requests by the user; they build the algorithm’s data and logic. When an 

Action finishes, a response is send from the server to the user in form of a Result. A 

Result is presented to the user in the form of a JSP (Java Server Page). Struts2 also 

includes another component called Interceptor, which executes tasks before and after 

Actions, but it was not used in this application. 

 

Figure 5 – Struts flow 

The web application runs the following steps, when a user is connected:  

a) When the web page is opened, OpenLayes calls web map services (Google Maps or 

Open Street Maps) to display an empty map. 

b) The user selects an origin, a destination, a schedule and the maximum number of 

modal transfers. The FilterDispatcher reads the inputs and send the user information 

to the corresponding Actions (where the algorithm code is stored).  

c) When an answer is found, the Result sends a query to Geoserver, through 

OpenLayers. Geoserver in turn produces a result displayed as a map (the shortest 

hyper-path).  

d) Finally OpenLayers shows the map from the previous step, within a web map service. 

It also displays expected travel time, number of modal transfers and a text travel 

guide. 
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WEB APPLICATION RESULTS 

The running platform where the algorithm was implemented is shown in Figure 6 (as a close-

up screenshot).  On the left side panel, user can choose origin, destination, period and 

maximum number of modal transfers that he/she is willing to do.  

 

When the result is calculated, the left panel displays a drop-down list where the hyper paths 

belonging to the Pareto Optimal set can be selected and also a list of written directions 

(instructions for following the hyper-paths).  

 

Figure 6 shows an example of results, where a user asked for multimodal viable hyper-paths 

from origin “Pumabús E-3” stop to destination “Camino Verde”. Here, the Pareto Optimal 

contains the following three hyper-paths: 

1. Hyper-path 1: expected travel time equal to 17 minutes, and a maximum of 3 modal 

transfers. 

2. Hyper-path 2: expected travel time equal to 18 minutes, and a maximum of 2 modal 

transfers. 

3. Hyper-path 3: expected travel time equal to 19 minutes, and no modal transfers. 

The hyper-path 1 is the fastest but has the largest number of modal transfers, this hyper-path 

may be fit someone who needs arrive at their destination faster no matter how. If a user 

doesn´t want modal transfers, she/he can choose the hyper-path 3 which is a bit slower than 

the number 1. There, a user can choose the hyper-path according her/his preferences 

respect to travel time and modal transfers. 

 

Giving as much as possible information to travelers helps them to understand and navigate a 

transit system (US DOT, 2011), so the inclusion of a Pareto Optimal set of hyper-paths along 

with their pros and cons make this platform more flexible and useful.  

 

 
Figure 6 – Screenshot from the Web application showing the following fields: source, destination, period and 

maximum number of modal transfers. It also shows the Pareto Optimal set as a list-box 
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Some hyper-paths may be difficult to interpret by the user, because they are composed of 

several paths to get the destination. Hence, the web application separates results (hyper-

paths) into sub-hyper-paths, such that each sub-hyper-path is displayed alone in the map 

(eliminating hyper-arcs and arcs that don’t belong to it).  

 

Also specific directions (instructions) for following the sub-hyper-path are shown in the left 

panel, indicating the number of modal transfers and the travel time on bicycle and walking 

modes. This information facilitates user to take a good decision. 

 

The shortest hyper-path from stop “Pumabús E-3” (in the Olympic Stadium) to stop “Camino 

Verde”, at the morning period, is shown in Figure 7. This hyper-path has an expected travel 

time of 17.00 minutes, and a maximum of three modal transfers. This hyper-path is 

composed of the following five sub-hyper-paths (whose instructions are shown in the left 

area of the web application, see Figure 7): 

1. Sub-hyper-path with three modal transfers. On the stop “E-3” board a bus of line 6, 

leave the bus at stop “E-1”, walk four minutes to “Bicicentro Estadio Olímpico”, 

request a bicycle and drive two minutes, leave the bike in “Bicicentro Anexo de 

Ingeniería” and walk four minutes to destination. 

2. Sub-hyper-path with three modal transfers. On the stop “E-3” board a bus of line 7, 

leave the bus at stop “E-1”, walk four minutes to “Bicicentro Estadio Olímpico”, 

request a bicycle and drive two minutes, leave the bike in “Bicicentro Anexo de 

Ingeniería” and walk four minutes to destination. 

3. Sub-hyper-path with two modal transfers. On the stop “E-3” board a bus of line 8, 

leave the bus at stop “Frontones”, transfer to “Bicicentro Química”, request a bicycle 

and drive two minutes, leave the bike in “Bicicentro Anexo de Ingeniería” and walk 

four minutes to destination. 

4. Sub-hyper-path with no modal transfers. On the stop “E-3” board a bus of line 6, 

leave the bus at stop “E-2”, board the first bus of lines 7 or 8. If you board a bus of 

line 8, leave the bus at stop “Camino Verde” (destination). If you board a bus of line 7, 

leave the bus at stop “E-1” and board the bus line 8 to stop “Camino Verde” 

(destination). 

5. Sub-hyper-path with no modal transfers. On the stop “E-3” board line 8 bus to stop 

“Camino Verde” (destination). 

The calculation and display of the hyper-path in the web browser is fast enough for the 

network of CU case. It takes lower than 30 seconds in an Ubuntu Server, with 8GB of RAM 

and an Intel i7 processor. As the network grows, results take longer to be calculated. 

Response times can be reduced by means of the pre-calculation of hyper-paths for the most 

popular origin-destination pairs. 
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Figure 7 – Screenshot from the Web application showing the shortest hyper-path from                                  

“Pumabús E-3” to “Camino Verde”. 

CONCLUSIONS 

A difficulty for the implementation of the algorithm to a real case is the lack of information. If 

the information on frequency of lines (during the day and during the year) is good, the results 

will also be also good. In the case study, Pumabús’ frequencies are not known by the 

transport managers; however they have a GPS monitoring system where they keep track the 

location of all buses throughout the day. Although this system is focused on monitoring the 

buses, it was possible to determine the frequency of lines for each hour of year 2012, 

through a spatial queries procedure. 

 

The SVH algorithm by Lozano & Storchi (2002) was never implemented before on a real 

network. We present the first known platform which incorporates such algorithm, and do it by 

means a web application, which can be simultaneously used by multiple users. 

 

The implementation of the SVH algorithm in the web application is a powerful tool which can 

help users find fastest paths, made transfers easy, and get a better use of the existing public 

transportation infrastructure (Laine et.al, 2003).   

 

The web application for the case study shows the potential of this tool as an Advanced 

Traveler Information System (ATIS) for multimodal public transport networks. Also, this tool is 

an economical alternative for boosting changes in travel behavior (Skoglund & Karlsson, 

2012), like discourage the use of car or encourage the use of park-and-ride facilities. 

 

The presented web application can be a useful tool in cities where schedules do not exist. 
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Existing web applications for shortest-path don’t cover cases such as the above studied, 

mainly because waiting times are not handled. In such applications, waiting time can be 

added as a weight in the arcs, but the results are inaccurate because waiting time is directly 

related to the attractive set and this set is not handled by other algorithms. Also, algorithms 

included in other web applications do not consider that the user want to limit the number of 

modal transfers. 

 

The SVH algorithm permits that user limits the number modal transfers, but not the number 

of line changes. This constraint can be included in the algorithm in future works. 
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