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 ABSTRACT 

In response to the developments in inspection technologies, infrastructure decision-making 
methods consider the optimum combination of inspection decisions on the one hand and 
maintenance and rehabilitation decisions on the other based on an economic evaluation that 
captures the long-term costs and benefits. Sample size has been included in inspection, 
maintenance, and rehabilitation (IM&R) decision-making as a decision variable when 
considering a single facility. While, the question of dealing with a network of facilities in 
making IM&R decisions has been addressed in the literature, this treatment does not 
consider condition sampling whereby each facility could require a different set of sample 
sizes over time. This paper presents an overview of a methodology developed to address the 
network level problem. The uncertainty due to condition sampling is captured and the related 
decision variables are incorporated in the IM&R decision making process. A sensitivity 
analysis based on a realistic literature- and practice-derived hypothetical network of facilities 
is conducted to explore the effects various factors have on the optimal solution. 
 
Keywords: Infrastructure management, condition inspection, maintenance, decision-making 
under uncertainty. 

1. INTRODUCTION 

Transportation infrastructure systems consist of spatially extensive and long-lived sets of 
facilities. Over the past two decades, several non-destructive inspection technologies have 
been developed and applied in collecting raw condition data and processing them to produce 
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useful condition input to infrastructure inspection, maintenance, and rehabilitation (IM&R) 
decision-making aimed at minimizing total expected life-cycle cost. Inspection deals with the 
gathering of data on the extent of facility damage. The data may be collected by visual 
inspection, through manual measurements, or by automated sensors. An average of 
collected damage measurements over a facility (defined as a homogeneous section) is an 
estimate of the current condition of that facility and, in turn, is one primary input to 
maintenance and rehabilitation (M&R) decision-making. 

The developments in nondestructive inspection technologies make it possible to estimate 
facilities’ conditions using large quantities of data. The quality of measurements, the 
sampling frequency and sample size, and the nature of correlation among condition variables 
at different locations determine the accuracy of condition estimates. Naturally, more accurate 
estimates have the potential to lead to more effective maintenance and rehabilitation 
decisions. Consequently, the expected combined user costs and maintenance and 
rehabilitation costs are reduced over the planning horizon. However, more accurate 
information requires more resources such as increased inspection frequency, advanced 
inspection sensor technologies, larger sample sizes, or possibly less correlated observations, 
as well as data processing methods that appropriately combine all this information. 

In response to the developments in inspection technologies, decision-making methods 
consider the optimum combination of inspection decisions on the one hand and M&R 
decisions on the other based on an economic evaluation that captures the long-term costs 
and benefits. Madanat (1993), Madanat and Ben-Akiva (1994), and Ellis et al. (1995) 
extended the Markov Decision Process (MDP) based infrastructure management 
decision-making framework (Golabi et al. 1982, Garnahan et al. 1987), which captures 
forecasting uncertainty, to the Latent Markov Decision Process (LMDP) framework by 
incorporating measurement errors associated with condition inspection. In addition, 
inspection technology and timing were introduced as decision variables. The LMDP 
framework has since been extended to include condition sample size as a decision variable 
in IM&R decision-making (Mishalani and Gong 2009). However, several of the 
aforementioned studies including this latest extension only considered decisions for a single 
facility. 

The question of dealing with a network of facilities in making M&R decisions has been 
addressed in the literature through a variety of formulations (e.g., Golabi et al.1982, Golabi 
and Shepard 1997, Murakami and Turnquist 1995, Smilowitz and Madanat 2000, 
Durango-Cohen and Sarutipand 2007, Kuhn 2010), however, these studies, while addressing 
several important issues, do not consider condition sampling whereby each facility could 
require different and time-varying sample sizes. Doing so optimally is valuable given the 
network nature of facilities that most infrastructure agencies are responsible for, the 
increasing number of inspection technology choices with possible varying degrees of 
accuracy and cost, and budget constraints agencies have to work within. In light of the 
importance of considering condition sampling, it is imperative to recognize the correlation 
that is expected among observations of condition of the same facility. 
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In this paper, a methodology that captures the uncertainty due to condition sampling and 
includes sampling related decision variables in the IM&R decision-making process at the 
network level is presented. In addition, a sensitivity analysis based on a realistic literature- 
and practice-derived hypothetical network of facilities is conducted and the resulting derived 
insights are discussed. 

2. METHODOLOGY 

Some network-level IM&R decision-making methods in the literature adopt randomized 
policies (Golabi et al.1982, Golabi and Shepard 1997, Murakami and Turnquist 1995, 
Smilowitz and Madanat 2000, Harper et al. 1990, Gopal and Majidzadeh 1991). Smilowitz 
and Madanat (2000) proposed a linear programming formulation for solving the infrastructure 
IM&R optimization problem at the network level considering inspection technology and timing 
as decision variables. Given the advances that study achieved in capturing these inspection 
decisions, it provides a natural basis for the methodology presented in this paper. 

In the latent condition framework (Madanat 1993, Madanat and Ben-Akiva 1994, Ellis et al. 
1995) Smilowitz and Madanat (2000) built upon, assessed facility condition is assumed to fall 
into one of a finite number of discrete condition states. Considering that inspection is not 
perfect, it is assumed that the measurement of condition states must not produce the true 
condition state. In order to infer the true condition states based on measurements, the nature 
of measurement error has to be considered. To do so, the concept of the information vector 
is introduced. This vector is a probability mass function on all possible condition states 
conditional on prior information. This prior information consists of the initial condition state 
before any decisions are made (i.e., at time 0), the M&R actions applied up to the current 
point in time, and all the condition measurements taken including those resulting from the 
most recent inspection. 

The formulation developed by Smilowitz and Madanat (2000) generalizes the facility level 
framework developed by Madanat and Ben-Akiva (1994) to a network level one by 
introducing randomized decisions and solving a linear programming problem. The assessed 
facility condition is assumed to fall into one of a finite number of discrete condition states. 
Given the current condition measurement along with historical information including previous 
measurements and IM&R actions, the posterior probability mass function of the true 
condition state of each facility (i.e., the information vector) is determined. In addition, 
transition probabilities are adopted to specify how facility condition evolves during the next 
time period, given the current condition state and the M&R action applied. A transition 
probability represents the likelihood of a facility to transition to a certain condition state in one 
period given the condition state it is currently in. Therefore, transition probabilities are 
organized into a matrix representing all combinations of transitions from state to state. While 
in the numerical application presented in Smilowitz and Madanat (2000) the transition 
probabilities are assumed invariant with respect to the age of facilities (i.e., the transition 
probabilities are stationary), the formulation is not restricted in this regard and could capture 
transition probabilities that depend on age. The formulation includes many realistic elements. 
However, an important decision variable and an associated modeling element are not 
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captured in this formulation, namely, the sample size and spatial correlation among 
measurements of condition taken at different locations along the same facility. 

The role of sampling is to increase the accuracy of the information regarding facility condition 
state. On the one hand, more samples result in higher accuracy. On the other hand, more 
samples will introduce more cost. Thus, sample sizes for each facility over time are important 
decision variables. Effectively, in the formulation developed by Smilowitz and Madanat 
(2000), for a facility either one sample is taken or not, which is quite limiting. Therefore, the 
extended formulation developed in this paper includes sample sizes as decision variables. In 
addition, non-stationary transition probabilities are assumed to depend on the age of a 
facility, where age is defined as the number of years since the most recent rehabilitation 
action was applied. That is, two facilities in the same condition state to which the same M&R 
action is applied will have different transition probabilities if their age is different. Specifically, 
the facility with lower age is assumed to have a smaller probability of deteriorating to a 
poorer state during the next period. Moreover, in the sensitivity analysis presented in section 
3 of this paper two condition inspection technologies are considered rendering the set of 
inspection decisions more flexible. Once multiple samples are taken from the same facility, 
the spatial correlation among these condition observations must be considered in quantifying 
the combined measurement and sampling uncertainty. Therefore, a spatial correction 
function, representing the correlation between two observations as a function of the distance 
between them (Mishalani and Koutsopoulos 2002), is adopted in determining this uncertainty 
where the function is positive and monotonically decreasing. 

The variance of the assessed condition is a critical element of the developed formulation and 
constitutes a major departure from the Smilowitz and Madanat (2000) formulation. This 
variance is determined as a function of the measurement technology, sample size, and the 
characteristics of the facility in terms of its intrinsic variability in condition and the spatial 
correlation. The determination of this variance is based on the formulation developed by 
Mishalani and Gong (2009) for a single facility. Another important departure from the 
formulation discussed above is the introduction of facility length, h, in representing the 
network. This variable influences the value of the determined variance of the assessed 
condition depending on the sample size, intrinsic variability, and spatial correlation. Finally, in 
addition to the user and IM&R costs discussed above, the hypothetical terminal cost incurred 
at the end of the time horizon represents the cost of bringing the facility back to the best 
condition state for the purpose of equalizing the service life from that point onward. 

In light of the elements described above, the problem of determining the best decision can be 
formulated as a linear program that extends that of Smilowitz and Madanat (2000). More 
specifically, the components of the formation are the following. 

• Decision variables: Wt(I,h,y,a,r,n) denotes the number of facilities at time t whose 
information vector is I, their length is h, and are of age y on which M&R action a will be 
performed, and inspection technology r will be used with n samples. As in the case of the 
formulation developed by Smilowitz and Madanat (2000), the nature of the decision 
variables when solving the network problem is that of a randomized policy. That is, 
facilities associated with the same information vector could receive different actions 
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where the numbers of facilities to receive each set of actions are optimally determined. 
However, the optimal set of actions specific facilities associated with the same 
information vector are to receive is not part of the solution outcome. Such decisions 
would be made based on practical field considerations once the optimal policy is 
determined. 

• Objective function: For each feasible realization of the decision variables, the expected 
total discounted cost includes the user, IM&R, and terminal costs. Of course, the 
decision variables include the sample size n and the measurement and sampling 
uncertainty takes into account the sample size, facility length, intrinsic variability, and 
spatial correlation. The objective function is a linear function of the decision variables. 

• Constraints: The constraints are similar to those of the formulation developed by 
Smilowitz and Madanat (2000) and are as follows. (i) Non-negativity constraints 
guarantee that each decision variable is non-negative. (ii) Conservation constraints 
ensure the conservation of facilities over time. That is, the information vectors must 
transition from one period to the next in a manner consistent with the condition state 
transition probabilities. (iii) The initial distribution of facilities as defined by a set of 
information vectors is assumed known and takes the form of an initial state constraint. 
(iv) Condition state constraints require that the proportion or number of facilities in the 
condition states considered to be poor is bounded by a maximum value each year.  
(v) Budget constraints require that the IM&R cost is bounded by a maximum and 
possibly a minimum value each year. 

Based on the above, the problem is reduced to finding the values of the decision variables 
that satisfy all the constraints and achieve the minimal objective function value. Since the 
objective function and all the constraints are linear with respect to the decision variables, the 
problem can be solved using linear programming. 

3. SENSITIVITY ANALYSIS 

A sensitivity analysis is conducted to explore the effect of various factors on the optimal 
solution. First, a base scenario, represented by one set of parameter value levels, is 
developed. More scenarios are then constructed by introducing additional parameter value 
levels that capture realistic ranges the various parameters could take. The parameters of the 
base scenario are determined by drawing upon various cases reported in the literature to 
arrive at a realistic representation. The specification is for the most part based on a realistic 
example developed by Gong (2006). The resulting parameter values are shown in Table 1. 

The factors considered in the sensitivity analysis and their corresponding values at different 
levels are shown in Table 2. The levels and parameter values corresponding to the base 
scenario presented above are shown in bold. In addition, budget constrain levels are 
introduced. Note that routine and rehabilitation maintenance cost, the intrinsic variance, and 
the variance of the inspection technologies are assumed fixed across all the scenarios. 
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Table 1 – Base scenario parameter values (all costs in $/m2) 
Condition State 4 3 2 1 
Routine maintenance cost 0.34 1.63 4.4 14.79 
User cost 18.47 56.735 75.155 113.43 
Terminal cost 2.675 22.485 55.695 64.87 
Rehabilitation cost 64.87 
Additional user cost due to M&R 1.45 for routine maintenance and 10.13 for rehabilitation 
Additional user cost due to insp. 0.09 for insp. tech. 1 and 0.0015 for inspection tech. 2 
Fixed inspection cost 0.0119 for insp. tech. 1 and 0.0093 for inspection tech. 2 
Unit inspection cost 0.00023 for insp. tech. 1 and 0.000085 for insp. tech. 2 
Intrinsic variance Function of the true condition state 
Variance of inspection technology Technology 1: 7.99; technology 2: 17.95 

 
In total, 1,458 scenarios are considered. The average expected total cost at optimality is 
calculated for each factor level, one factor at a time. The results are shown in Figure 1. User 
cost has the largest effect on the expected total cost. The annual budget constraint is the 
second most influential factor. The terminal cost and spatial correlation have similar effects 
on the expected total cost, in terms of magnitude. The effects of fixed inspection cost and 
unit inspection cost appear to be negligible. 

Table 2 – Factor levels and values (base scenario values are indicated in bold) 
Factor Level Pavement Condition State 
  4 3 2 1 

0 independent observation 
1   ρ(s) = exp(−0.054271× s),∀s > 0   Correlation function 
2   ρ(s) = exp(−0.026348 × s),∀s > 0  
0 0.0045 for 1 and 0.0042for 2 
1 0.0119 for 1 and 0.0093 for 2 Fixed inspection cost ($/m2) 
2 0. 0291 for 1 and 0.0152 for 2 
0 5.75 
1 2.71 Unit cost ratio: tech 2  

to tech 1 2 1.62 
0 13.67 42 55.64 83.97 
1 18.47 56.74 75.16 113.4 User cost ($/m2) 
2 34.72 106.7 81.29 213.2 
0 2.675 22.49 48.14 64.87 Terminal cost ($/m2) 1 0 0 0 0 
0 100 
1 20 
2 15 
3 10 
4 8 
5 6 
6 4 
7 2 

Annual Budget Constraint ($/m2) 

8 1 
 
Based on these results, not surprisingly, user cost is a key driver of IM&R decisions. Higher 
user costs result in more M&R actions to be taken to avoid increased used costs at poorer 
condition states. Therefore, it is critical for agencies to assess and represent user costs 
accurately to avoid either over-spending on M&R actions (in the case where user costs are 
overestimated) or under-spending on M&R actions (in the case where use costs are 
underestimated) resulting in large user costs. Again not surprisingly, the annual budget 
constraint is another key aspect of the problem. The lower the constraint, the more restricted 
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the agency is in applying expensive M&R actions and the higher the user costs are due to 
the resulting poorer condition states. In light of the quantification of the effect of the budget 
constraint on the expected total cost at optimality, it is worthwhile for agencies to determine 
such quantifications and present them to budget developers as an important input to setting 
budgets with a clear understanding of their implications on user costs. 

It is valuable to note that the spatial correlation among adjacent observations along a facility, 
which has been shown to be present (Mishalani and Koutsopoulos 2002), does have an 
impact on the optimal solution and, thus, it is important for agencies to have a good 
understanding of the nature of this correlation. More specifically, stronger spatial correlation 
among adjacent observations along a facility increases the average expected total cost at 
optimality as a result of the reduction in the information gained from observations reflecting 
higher positive correlation. As for terminal cost, the magnitude of the impact of ignoring such 
adjustments is not trivial and, therefore, it is crucial from a practical perspective for agencies 
not to overlook the equalization of service life concept, which has been theoretically 
established. While the effects of inspection costs are negligible when it comes to the actual 
expected total cost at optimality, as is expected given the much larger magnitudes 
associated with M&R and user costs, it is important not to misinterpret these result as an 
indication of the lack of importance of considering inspection and sampling as part of the 
decision-making framework. The uncertainty associated with inspection and sampling is fully 
captured in the sensitivity analysis along the lines discussed in section 2 and, if the 
evaluation results of the single facility case (Mishalani and Gong 2008) extend to the network 
level case, this uncertainty has important implications on the optimal solution. 

 

Figure 1 – Average expected total cost at optimality versus factor levels 

($
/m

2 ) 
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4. SUMMARY AND FUTURE RESEARCH 

This paper presents a methodology developed to address the IM&R decision-making at the 
network level whereby the uncertainty due to condition sampling is captured and sample 
sizes over time and across the facilities forming the network are included as decision 
variables in the optimization. In addition, a sensitivity analysis is conducted to explore the 
effect of various factors on the optimal solution. The sensitivity analysis revealed that the 
user cost, annual budget constraint, terminal cost, and the spatial correlation function have 
appreciable impact on the optimal solution. Among these four factors, the impacts of the user 
cost and annual budget constraint are the most marked. 

In light of the identified single factor effects, it is important to investigate joint factor effects as 
well. In addition, it is important to conduct an evaluation to quantify the value of capturing 
sampling uncertainty and including sampling as a decision variable for the network case. As 
mentioned above, such an evaluation has been conducted for the facility level problem in the 
absence of a budget constraint (Mishalani and Gong 2008), however, it remains to be 
undertaken as part of future research for the network level problem in the presence of a 
budget constraint. 

Regarding methodology related future research, it is important to capture facility interactions. 
Durango-Cohen and Sarutipand (2007) captured important interactions, however, condition 
sampling was not considered. Developing a decision-making framework that simultaneously 
takes into account facility interactions and includes condition sample sizes across facilities 
and over time as decision variables would be worthwhile. 
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