
Seelhorst and Hansen  Page 1 
 

1 
 

Temporal Analysis of Operational Errors at Air Traffic Control Facilities 

 

Michael Seelhorst 

107 McLaughlin Hall 

University of California, Berkeley 

Berkeley, CA 94720 

 

Telephone: (865) 585-0935 

Email: mseelhorst@berkeley.edu 

 

Mark Hansen 

114 McLaughlin Hall 

University of California, Berkeley 

Berkeley, CA 94720 

 

Telephone: (510) 642-2880 

Email: mhansen@ce.berkeley.edu 

 

Abstract

This paper focuses on the occurrence of aircraft separation minimum violations as documented in the form of 

operational errors (OEs) at two types of air traffic controller facilities, terminal radar approach control (TRACON) 

facilities and air route traffic control centers (ARTCCs). Poisson regression was used to analyze the daily count of 

OEs at various facilities of both types. The occurrence of OEs was found to increase approximately with the square 

of daily traffic at TRACON facilities and slightly higher than the square of traffic at ARTCC facilities. At TRACON 

facilities, where separation violations are not automatically reported, an increase in reporting was seen after a new 

severity metric was introduced in 2007. It was also found that large, consolidated TRACON facilities tend to behave 

like a sum of several smaller facilities rather than a single larger facility with respect to the occurrence of OEs vs 

daily traffic. Weather effects such as visibility and wind were found to influence the occurrence of OEs as well. The 

model prediction for TRACON facilities is very good for the most severe OE types and very poor for the least 

severe OE types, indicating many unobserved factors contributing to the reporting of the least severe OE types in the 

terminal environment. Model prediction for the ARTCC facilities is very good for about half the facilities

Introduction

An operational error (OE) occurs when there is a violation of aircraft separation minimums due to air traffic control 

or from allowing an aircraft to enter another controller’s airspace without notification. Fortunately, these events are 

infrequent, but each one represents a serious safety risk.  

The factors that lie behind the occurrence of these extremely infrequent yet very serious safety risks is of 

major importance, and significant work has been done to investigate them. Due to the infrequent nature of these 

events, specific models that handle large sets of sparse data are typically used. One of the most common among 

these is Poisson regression. Of particular interest to us are the effects of traffic, weather, and policy changes on the 

rate of operational error occurrences at terminal radar approach control (TRACON) and air route traffic control 

center (ARTCC) facilities. In this paper we first review some of the studies involving operational errors and then 

analyze operational errors separately at TRACON and ARTCC facilities using Poisson regression. Conclusions and 

recommendations for future work will follow. 
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Background

Although the occurrence of operational errors has been studied extensively, most studies have used aggregation 

across time or space as a metric for OE occurrence. Hansen and Zhang [1] modeled the daily count of operational 

errors at all TRACONs with negative binomial regression, Gosling [2] studied the occurrence of OEs at separate 

Area Route Traffic Control Center (ARTCC) facilities aggregated over an entire year, and Panagiotakopoulos et al 

[3] modeled the rate of OEs per month at a single facility using extreme value theory. We propose to use the daily 

count of operational errors at specific facilities between 2004 and 2009. While a daily count at a specific facility is 

still aggregated across the entire day, it should present insights into the occurrence of OEs that is not seen with more 

aggregate data. 

One of the primary questions of interest that motivated this research is the relationship between OE 

occurrence and traffic. It has been suggested that the relationship should be roughly quadratic (# OEs ~ traffic
2
) 

because the number of possible path intersections roughly increases with the square of the number of aircraft in a 

sector. Murphy [4] has shown that the exponent for traffic should be at least 2 for en route facilities, with significant 

differences across centers. These results were found by using the number of aircraft in the sector at the time each OE 

occurred as the measure for traffic. Hansen and Zhang [1] have shown that the value of the exponent is around 1.7 

for daily operations at all TRACON facilities.  

Secondly, the impact of weather on the occurrence of OEs is important. Many authors have included 

weather effects through an overall subjective metric called traffic complexity, which has been shown to be a 

significant factor contributing to OEs [3]. Rodgers and Nye [5] found that once the number of operations was 

accounted for, air traffic complexity was a significant predictor of the total number of operational errors. Air traffic 

complexity is partially a subjective measure, but is a function of the variety of operations, airspace limitations, and 

weather. Weather variables such as wind, visibility, and temperature can represent a portion of traffic complexity 

that could give rise to operational errors. 

Finally, another factor of interest is the effect of policy changes on OE reporting. At TRACON facilities, 

no automated tool is currently universally used to detect losses of separation like the Operational Error Detection 

Patch is used in the en route environment [6]. As a result, no matter how perceptive the controllers are, some errors 

will go unreported. The specific policy change that we investigated is the adoption of the Separation Conformance 

as a metric for OE severity. In June 25, 2007, an FAA order was sent out that specified a new measure of OE 

severity that would replace the OE Severity Index as the official measure. A key component of the new safety 

measure was the introduction of proximity events which would no longer be classified as operational errors, 

although they are still violations of separation minimums. Because they are no longer considered operational errors, 

controllers should not be penalized for reporting them as they would for a normal OE. Thus one would expect the 

number of reported errors in this category to increase. 

 The OE severity index was a range from 0-100 of many weighted factors, such as horizontal separation, 

closure rates, and converging / diverging paths. The separation conformance metric is much simpler, and relies only 

on horizontal and vertical separation retained at the closest point of proximity. Depending on the relative percentage 

of vertical and horizontal separation retained, the OE is classified into four categories, A, B, C and PE (proximity 

event), with A being the most severe type and a PE being a very minor breach of separation minimums.  

Figure 1, shown below, illustrates the categories of separation conformance as a function of the horizontal and 

vertical separation retained at the point of minimum separation. Only the percentages of the minimum separation 

requirements matter, so the metric is the same regardless of the magnitude of the separation required in each 

direction. 
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Figure 1. Separation Conformance Severity Metric (Source: FAA) 

 

TRACON Analysis 

The OE data used for this study is the daily count of errors at each of the largest 16 stand-alone TRACON facilities 

from October 1, 2004 to June 28, 2009 (see Table 1, below), resulting in a total of 27,710 TRACON-days. A total of 

1,798 operational errors were observed over this time period, which is roughly a rate of 0.06 OEs/TRACON-day, or 

1 OE/day for all TRACONs studied here. For purposes of comparison between the time period before and after the 

adoption of the separation conformance metric, all OEs will be classified as A, B, C, and PEs using the separation 

conformance metric even if the OEs occurred before the measure went into effect.  

TABLE 1 TRACON Facilities 

TRACON Facility Primary City 

N90  New York 

D10 Dallas 

A80 Atlanta 

C90 Chicago 

PCT Washington D.C. 

SCT Los Angeles 

D21 Detroit 

I90 Houston 

NCT San Francisco 

D01 Denver 

L30 Las Vegas 

P50 Phoenix 

S46 Seattle 

M98 Minneapolis  

S56 Salt Lake City 

A90 Boston 

 

TRACON Model 

Poisson regression is a common model that is used to study count data, and can be used for sparse data like 

we observe with operational errors. One observation in our model will be defined as the number of OEs at a 

particular TRACON on a particular day. Thus, each facility will have many different observations for each day in 

our time period of study, which we will assume are independent of each other. This type of model will allow us to 

capture longitudinal changes in OE occurrence as well as cross-sectional variation across facilities. 
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For our model, we assume that the occurrence of daily operational errors at any TRACON follows the 

Poisson distribution. The probability of observing a specific number of OEs for a given facility and date is shown by 

the following equation: 

          
      

  

   
                  (1) 

where:      OE number at date and facility I  

     Observed OE number at date and facility i  

     Average number of OEs to be expected at date and facility i 

 

We will model the expected number of OEs,   , with a logarithm link function of our explanatory variables: 

                                   (2) 

where:       explanatory variable j for date / facility i 

      coefficient for explanatory variable j 

     The model intercept 

 

A list of our explanatory variables is given below in Table 2. 

TABLE 2 TRACON Model Variable Descriptions 

Explanatory Variable TRACON Model – Variable Description 

Log_Traffic Natural logarithm of daily TRACON operations 

Percent_Itinerant Percent of TRACON operations that are itinerant 

IMC Percent of the time daily operations are in IMC conditions 

TempF Average daily temperature (deg F) 

WindSpd Average daily wind speed (knots) 

Vis Average daily visibility (miles) 

N90_Audit Dummy for N90 TRACON during 2005 audit 

Old_Rule Dummy for dates prior to June 25, 2007 

Spring Dummy for March, April, May 

Summer Dummy for June, July, August 

Fall Dummy for September, October, November 

 

Previous research has investigated the quantity and type of operations and how they influence the 

occurrence of operational errors. We use two traffic measures to model these metrics: the natural logarithm of the 

daily traffic and the percentage of daily traffic that is listed as itinerant. The natural log of traffic is used so the 

coefficient obtained will represent the elasticity between OE rate and traffic. Itinerant operations are flights that are 

departing or arriving to an airport within the TRACON facility being observed, rather than being a through flight, 

which originates and exits the observed TRACON without landing. The percent of itinerant operations is used 

because we assume that controlling non-itinerant traffic is fundamentally different than controlling aircraft arriving 

or departing from airports within the area. The percentage of flights that are designated as itinerant is a proxy for the 

complexity of traffic in the sector, due to the complicated trajectories of departing and arriving flights. The source of 

the traffic data is the OPSNET database within ASPM. 

Another contributor to traffic complexity is the weather in the sector on the day the operational error 

occurred, which we obtained from ASPM as well. It would be difficult to quantify the weather over the airspace of 

the entire TRACON, so the largest airport within the facility’s airspace was used as a proxy for the entire region. For 

example, the weather at JFK was used to represent the New York TRACON and the weather at SFO was used to 

represent the weather at the Northern California TRACON. Although this is a somewhat crude measurement, the 

airspace around TRACONs are small with low flight levels, so the airport weather measurements will be used as a 

first approximation for TRACON weather.  

The weather variables obtained were hourly measures of temperature, wind speed, visibility, and whether 

the operations were in IMC or VMC. Because hourly weather observations are obtained, each metric was averaged 

across a day for each facility, weighted by the hourly operations at the airport of interest. Weighing the weather 
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measurements by the hourly operations will give us average measures that are representative of the weather an 

average flight departing or arriving at the airport of interest will experience. Although this is not entirely indicative 

of all traffic in the TRACON, the primary airport within each facility handles a majority of the facility’s traffic. 

The dummy variable N90_Audit was equal to 1 if the observation was at the New York TRACON during 

the time period of the 45 day audit in 2005. The reason this is included is that the audit revealed a very large number 

of unreported OEs during this time period that is not representative of the same reporting behavior at other facilities. 

Seasonal dummy variables were included to capture the variation across seasons. The Old_Rule dummy is a 

measure of policy changes in the system. We set this variable equal to 1 for all time periods prior to June 25, 2007, 

when the separation conformance measure went into effect.  

TRACON Results 
Three models were run for counts of different groups of OEs. The first model used the counts of all OEs, including 

proximity events. The second model did not include the proximity events (only A, B, and C errors), and the third 

model uses only the two most severe error types, A and Bs. The results from all three models are presented in 32 

below. 

 

TABLE 3 TRACON Model Regression Estimates 

 All OEs Model A,B&C Model A&B Model 

Variable Estimate   Std. Error Estimate   Std. Error Estimate   Std. Error 

Intercept -15.9 ** 1.13 -16.7 ** 1.29 -16.3 ** 1.95 

Log_Traffic 1.31 ** 0.06 1.35 ** 0.07 1.48 ** 0.10 

Percent_Itinerant 2.54 ** 0.93 2.66 * 1.05 0.90  1.54 

IMC 0.80 ** 0.11 0.73 ** 0.12 0.20  0.21 

TempF 0.0015  0.002 0.011 ** 0.002 0.009 * 0.004 

WindSpd 0.056 ** 0.006 0.058 ** 0.007 0.04 ** 0.01 

Vis -0.12 ** 0.02 -0.11 ** 0.02 -0.16 ** 0.03 

N90_Audit 3.81 ** 0.11 3.76 ** 0.12 3.13 ** 0.22 

Old_Rule -0.57 ** 0.05 -0.43 ** 0.06 -0.27 ** 0.09 

Spring -0.12  0.07 -0.07  0.08 0.22  0.14 

Summer -0.32 ** 0.09 -0.16  0.11 0.12  0.18 

Fall -0.06  0.08 0.02 ** 0.09 0.32 * 0.15 

** Significant at 1% level 

* Significant at 5% level 

 

The first thing to notice is that the Log_Traffic coefficient is less than 2 and highly significant for all three 

models. It ranges from 1.31 for all OEs up to 1.48 for A & B errors. This suggests that the most severe errors are 

more sensitive to traffic than the less severe errors. The second thing to notice is that the Old_Rule coefficient is 

negative and significant for all three cases, indicating that all types of OEs have increased after the Separation 

Conformance metric went into effect. The seasonal dummy variables do not reveal any obvious trends, as most of 

the variables have large standard errors. 

Much of the differences in seasonal effects are likely captured in the weather variables. The weather 

variables that are significant in each model include temperature, wind speed, and visibility. Increasing wind speed 

and decreasing visibility are both likely to increase the number of OEs by creating a more complicated airspace to 

navigate. Temperature, which can be an indicator of overall good weather, has a positive sign, which indicates 

higher temperature increases the occurrence of all types of OEs. The IMC variable is positive, as expected, but only 

significant for the models including the least severe types of OEs.  

All three traffic coefficients are lower than we expected based on intuition and previous work. One 

consideration that we left out of the first set of models was the distinction between the consolidated TRACON 

facilities and non-consolidated ones. Consolidated TRACONs effectively function as a group of smaller TRACONs 

that are located in the same building. The operational characteristics of these facilities differs enough from the 

smaller TRACONs that our model is not capturing the true effect of traffic on the occurrence of OEs. 

To illustrate this concept, imagine that the number of OEs is proportional to the square of traffic at all 

facilities. If you double the traffic at any facility, the number of OEs at that facility should increase by a factor of 4. 

Assume we have two identical facilities, with the same traffic and number of OEs. If we combine these two facilities 
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into one, we will now have double the traffic, but only double the number of OEs, which is not consistent with our 

assumption that the number of OEs rises with the square of traffic at each facility. Thus, if the consolidated 

TRACONs are actually behaving like the sum of two or more smaller TRACONs, the quadratic behavior that we 

believe exists is being masked by linearly combining the traffic and OEs at each sub-TRACON facility. 

To categorize the TRACONs into consolidated and stand-alone facilities, we used the definition of a 

consolidated TRACON from ASPM. These facilities provide approach control for two or more large hub airports 

where no single airport accounts for more than 60 percent of the total TRACON traffic count. This metric fits for 

four different facilities: Southern California (SCT), Northern California (NCT), New York (N90), and Potomac 

(PCT) TRACONs. To correct for this difference across facility types, we included a dummy variable for the 

consolidated TRACONs, and recalculated the coefficient estimates. The results are shown below in Table 4. 

Interestingly, the traffic coefficient is very close to 2 for each of the models, and is highly significant. This 

suggests that the occurrence of operational errors of all severity levels roughly increases with the square of traffic, 

all else equal. The Consolidated dummy variable is negative and highly significant for all three models, suggesting 

that these facilities have fewer OEs than the other facilities, all else equal. This is consistent with our thought 

experiment about linearly combining facilities where OEs increase with the square of traffic. 

Another interesting change in this model is the sign of the Percent_Itinerant variable, which is now 

negative. The change is likely due to lower average percentage of operations that are itinerant for traffic at 

consolidated TRACONs compared with the stand-alone TRACONs. The lower percentage of itinerant operations at 

consolidated TRACON facilities is another reason to treat them separately from the stand-alone facilities.  

TABLE 4 TRACON Model Regression Estimates 

 All OEs Model A,B,&C Model A&B Model 

Variable Estimate  Std. Error Estimate  Std. Error Estimate  Std. Error 

Intercept -17.0  ** 1.05 -17.8 ** 1.23 -17.5 ** 1.90 

Log_Traffic 2.04 ** 0.08 2.00 ** 0.10 1.95 ** 0.16 

Percent_Itinerant -1.75 * 0.88 -1.00  1.04 -1.40  1.55 

IMC 0.90 ** 0.11 0.82 ** 0.13 0.27  0.21 

TempF 0.0011  0.002 0.008 ** 0.002 0.006  0.004 

WindSpd 0.055 ** 0.006 0.057 ** 0.007 0.04 ** 0.01 

Vis -0.13 ** 0.02 -0.12 ** 0.02 -0.17 ** 0.03 

N90_Audit 3.83 ** 0.11 3.77 ** 0.12 3.13 ** 0.22 

Old_Rule -0.64 ** 0.05 -0.49 ** 0.06 -0.31 ** 0.09 

Spring -0.11   0.07 -0.06  0.08 0.23  0.14 

Summer -0.29 ** 0.09 -0.14  0.11 0.13  0.18 

Fall -0.05   0.08 0.02  0.09 0.32 * 0.15 

Consolidated -0.98  ** 0.08 -0.85 ** 0.09 -0.60 ** 0.15 

** Significant at 1% level 

* Significant at 5% level 

 

TRACON Model Fit 

Two common measures of goodness-of-fit for Poisson regression models are the deviance and the Pearson Chi-

Square statistics. These statistics provide a rough estimate if the assumption in the Poisson model of equal mean and 

variance is valid. If the deviance and the Pearson statistics divided by the degrees of freedom in the model are both 

close to 1, then the Poisson model assumption is generally accepted. If these statistics are greater than 1, this is an 

indication that the model is over-dispersed (e.g. the variance is actually greater than the mean) and the Poisson 

model is not valid. Typically in these situations a more general model, such as Negative Binomial regression is used. 

The other case, where the statistics divided by the degrees of freedom are less than 1, indicating under-

dispersion, is not as commonly seen and as a result fewer methods have been developed to deal with these situations. 

The deviance statistics divided by the number of degrees of freedom for our models range from 0.330 for the All OE 

model to 0.137 for the A&B model. The results for the Pearson statistics are 1.33 for the All OE model and 1.07 for 

the A&B model. The low deviance numbers suggest a poor fit due to under-dispersion but the Pearson numbers 

suggests a good fit. Using these two numbers alone is not enough evidence to suggest a fit or lack of fit due to 

under-dispersion.  
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Boyle and Flowerdew [7] have shown that using Poisson regression on very sparse data sets can lead to low 

deviance values due to the lack of asymptotic converge of the deviance statistic to the Chi-Square distribution. A 

simulation method has been developed to determine if the low deviance is a proper indicator of lack of fit due to 

under-dispersion or is simply a result of very sparse data [8]. The simulation begins with using the fitted values from 

the original model as the means of a set of Poisson random variables that represent the true distribution of OE 

occurrences. These Poisson random variables are then used to create a new set of observed values by taking a 

random draw from each Poisson random variable for each observation. For each new set of observations, we run the 

same model and calculate the new deviance. If the model is a proper fit for the data, then the mean of these 

simulated deviances will be close to the original deviance.   

For the first model using all OEs, the simulated deviance mean is 8309 with a standard deviation of about 

200. The actual deviance of 9147 is much larger than the simulated mean, thus indicating true under-dispersion. The 

A,B & C model has a very similar distribution to the All OEs model, indicating under-dispersion and a poor fit as 

well. The model for A&B OEs has a true deviance of 3797 with a simulated mean and standard deviation of 3720 

and 185, respectively. The similarity between the simulated mean and the actual deviance suggests that the low 

deviance value arose simply due to highly sparse data and is not an indication of under-dispersion. A lack of fit in 

the first two models does not necessarily rule out the legitimacy of the parameter estimates, however. 

TRACON Prediction 

The final models were used to predict the number of OEs at each facility over the time period studied. For each 

facility we wanted to test the null hypothesis that the observed data were produced by a distribution defined by the 

results from our model. If we reject the null, we can conclude that model is not a good fit for the true process. A 

common method of evaluating this goodness-of-fit is to use Pearson’s Chi-Square statistic, shown by the following 

equation: 

        
       

 

  

 
         (3) 

Where  k = number of categories 

    = number of observations in category i 

    = expected number in category i 

The test statistic is distributed Chi-Squared for large sample sizes. Also, the expected number of counts in each 

category should be larger than 5. However, the Chi-Square distribution assumption can be invalid when any 

category has a much larger observed count than expected count, which we have in many of our facility predictions. 

Rather than use Pearson’s statistic, we will use the G-Test for goodness of fit. The G-Test statistic is based on 

likelihood-ratio and is approximately Chi-Square distributed with k-1 degrees of freedom. The equation for 

calculation of the G-Statistic is shown below. 

              
  

  
   

       (4) 

The number of categories for some of our facilities is very small (2 or 3), so we will use simulation to 

determine the exact p-value of the G-Test. This method is common when the asymptotic behavior of the test statistic 

is in question. The method followed is to assume that the null hypothesis is true and draw a new set of observed data 

using the predicted results as the true distribution. A new G-statistic is calculated and the compared to the original 

G-statistic. This process is repeated 10,000 times for each facility, and the p-value for the G-Test is the percentage 

of times the simulated G-statistic is greater than the original G-statistic. The simulation results for each facility are 

shown in Table 5. 

The p-values in the table above correspond to the null hypothesis that the model results represent the real 

distribution the observed data came from. Thus, a good model fit will have a large p-value in this table, because we 

will not be able to reject the null hypothesis at a high level of significance. Lack of rejection of the null is not the 

same as accepting the null, and thus we must be careful when interpreting these values as acceptance of a good 

model fit. For the very large p-values shown above, however, these at least suggest that the model fit is adequate. 

Notice that the model fit for the severe errors (A & B model) is much better than for all the errors together (All OE 

Model). Perhaps many of the less severe errors are caused by variables we neglected to include, or are somehow 

impossible to accurately model. The weather and operational measures included in our model appear to predict well 

the most severe errors at most of the facilities. The prediction is very poor when looking at the aggregate, however.   
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TABLE 5 TRACON Facility Prediction Results
 

 G-Test P-Values  

TRACON Facility All OEs Model A,B, & C Model A & B Model Associated Airport(s) 

N90  0.001 0.014 0.003 LGA / JFK 

D10 0.000 0.000 0.961* DFW 

A80 0.000 0.000 0.019 ATL 

C90 0.000 0.000 0.419* ORD 

PCT 0.000 0.000 0.000 IAD / BWI 

SCT 0.000 0.000 0.092* LAX / SAN 

D21 0.000 0.000 0.195* DTW 

I90 0.000 0.000 1.000* IAH 

NCT 0.005 0.029 0.808* SFO / OAK 

D01 0.009 0.750* 0.408* DEN 

L30 0.002 0.041 0.776* LAS 

P50 0.008 0.008 0.037 PHX 

S46 0.037 0.324* 0.602* SEA 

M98 0.001 0.011 0.381* MSP 

S56 0.150* 0.056* 0.440* SLC 

A90 0.000 0.000 0.002 BOS 

All Facilities 0.000 0.000 0.000  

* Not significant at 5% level  

ARTCC Analysis 

ARTCC Model 
We also investigated the occurrence of operational errors at air route traffic control centers (ARTCCs). Total daily 

operations in each center were used as the measure for traffic, just like the TRACON model. However, the weather 

variables had to be introduced in a different way from the TRACONs due to the large size of the ARTCC airspaces. 

Weather data was taken from NOAA surface stations [9] and aggregated for each day across each facility’s airspace. 

The number of stations in each ARTCC ranged from 50 to over 700 depending on the facility and the day. We will 

assume that the sample size of these is large enough to get a rough estimate of the weather conditions across the 

entire airspace. The weather variables used in this model were average visibility, average temperature, and the 

percentage of stations within each facility that experienced fog and rain for each day. Yearly dummy variables are 

used instead of an indicator of the change in reporting policy because the ARTCC facilities do not rely on self-

reporting the way TRACONs do. Seasonal dummy variables are included as well. 

TABLE 6 ARTCC Model Explanatory Variables 

Explanatory Variable ARTCC Model – Variable Description 

Log_Traffic Natural logarithm of daily ARTCC operations 

Temperature Average daily temperature (deg F) 

Visibility Average daily visibility (miles) 

Fog Percentage of stations experiencing fog 

Rain Percentage of stations experiencing rain 

Y2004 Dummy for the year 2004 

Y2005 Dummy for the year 2005 

Y2006 Dummy for the year 2006 

Y2007 Dummy for the year 2007 

Y2008 Dummy for the year 2008 

Spring Dummy for March, April, May 

Summer Dummy for June, July, August 

Fall Dummy for September, October, November 

 

ARTCC Results 

The model was run for the three categories of OEs, just like for the TRACONs (All OEs, A, B & Cs, and A & Bs). 

The results for all three models are shown below in Table 7. 
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TABLE 7 ARTCC Models Regression Estimates 

 All OEs Model A, B, & C Model A & B Model 

Variable Estimate  Std. Error Estimate  Std. Error Estimate  Std. Error 

Intercept -25.4 ** 0.81 -26.7 ** 1.01 -28.7 ** 2.08 

Log_Traffic 2.53 ** 0.08 2.59 ** 0.11 2.62  ** 0.22 

Temperature 0.004 * 0.002 0.006 ** 0.002 0.015  ** 0.004 

Visibility 0.054 ** 0.017 0.067 ** 0.021 0.088 * 0.042 

Fog 0.97 ** 0.23 1.20  ** 0.28 1.23 * 0.56 

Rain 0.41 ** 0.08 0.46  ** 0.10 0.31  0.20 

Y2004 -0.07  0.11 0.12  0.13 -0.30  0.26 

Y2005 -0.30 ** 0.08 -0.10  0.10 -0.15  0.18 

Y2006 -0.19 * 0.08 -0.20 * 0.10 -0.53  ** 0.19 

Y2007 -0.14 ** 0.08 -0.10  0.10 -0.34  0.19 

Y2008 -0.06  0.08 -0.05  0.10 -0.32  0.19 

Spring -0.03  0.06 0.01  0.07 -0.14  0.14 

Summer -0.01  0.07 -0.002  0.09 -0.44 * 0.18 

Fall -0.01  0.06 0.01  0.08 -0.21  0.15 

** Significant at 1% level 

* Significant at 5% level 

 

The coefficient for the Log_Traffic variable is between 2.5 and 2.6, depending on the error severity used, 

and is highly significant in each. This is higher than was seen in the case of the TRACONs, even when accounting 

for the operational differences between facility types. Our model results suggest that in the en route airspace more 

traffic, all else equal, increases the rate of OE occurrence faster than in the TRACON airspace. This could be an 

indicator of differences in airspace complexity caused by an increase in traffic. 

Also, note the significant effects of weather on OEs. The coefficient estimates for temperature and visibility 

are consistent with the results found in the TRACON models. Fog and rain both appear to increase the number of 

OEs, which is to be expected. 

ARTCC Model Fit 
The problem of low deviance is prevalent in the ARTCC model as well. The values for deviance / degrees of 

freedom range from 0.386 for the All OE model to 0.107 for the A&B model. The same simulation was performed 

as with the TRACON model to determine if the low deviance represents a potential problem of under-dispersion or 

if it arises simply due to sparse data. The simulated mean for each of the three models is very close to the actual 

mean. This indicates that the low model deviance is likely due to highly sparse data, rather than any under-

dispersion.  

ARTCC Prediction 

We also predicted the number of OEs at each ARTCC facility and performed the same goodness-of-fit tests. The 

prediction results are shown below in Table 8. 

The model predictions are better on a per-facility basis for the en route centers. Over half of the facilities 

have a very large p-value, indicating a lack of evidence to reject the hypothesis that the model is a good fit for the 

data. Note that the spread across facilities is very large. For some facilities, such as ZDV, the model does a very 

good job predicting the occurrence of all OE types, while for others, such as ZID, the model does a poor job. Unlike 

the TRACON prediction results, the p-values for the ARTCC facilities appear to be consistent across all OE types. 

That is, the ARTCC model does just as good, or poor, of a job predicting serious OEs for any given facility as is 

does predicting the less severe errors for the same facility. This is likely because of the high variability in reporting 

minor errors at TRACON facilities due to self-reporting. 
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TABLE 8 ARTCC Facility Prediction Results 

 G-Test P-Values 

ARTCC Facility All OEs Model A,B,&C Model A&B Model 

ZAB 0.834* 0.839* 0.838* 

ZAN 0.154* 0.154* 0.152* 

ZAU 0.002 0.001 0.001 

ZBW 0.000 0.000 0.000 

ZDC 0.000 0.000 0.000 

ZDV 0.939* 0.940* 0.938* 

ZFW 0.000 0.001 0.000 

ZHU 0.000 0.000 0.000 

ZID 0.000 0.000 0.001 

ZIX 0.019 0.020 0.019 

ZKC 0.089* 0.087* 0.088* 

ZLA 0.117* 0.123* 0.119* 

ZLC 0.262* 0.258* 0.251* 

ZMA 0.099* 0.092* 0.093* 

ZME 0.685* 0.676* 0.675* 

ZMP 0.000 0.000 0.000 

ZNY 0.120* 0.120* 0.126* 

ZOA 0.520* 0.510* 0.514* 

ZOB 0.002 0.002 0.002 

ZSE 0.251* 0.243* 0.247* 

ZTL 0.035 0.033 0.034 

All Facilities 0.000 0.000 0.000 

* Not significant at 5% level 

 

OE Severity Logit Model 

Finally, we wanted to investigate how operating conditions and weather influence the severity of a given operational 

error, rather than simply exploring the occurrence of the errors themselves. In the highway accident literature [10], a 

logit model has been used to determine the relationship between the severity of an accident and various road and 

operating conditions at the time of the accident. A similar analysis will be performed here. In our case, we have 

grouped the OE severity levels into three categories: Proximity Event, C, and A&B. One observation was defined as 

a single OE-TRACON-day, and the explanatory variables used in the Poission Regression models earlier in the 

paper were recorded. Note that the vast majority of the days did not have any operational errors, which we are not 

analyzing in this section. We are developing a model to explain the severity of the operational error, conditioning on 

the operational error occurring. For the case where a single day at a TRACON has multiple OEs, the operating 

conditions were repeated into multiple observations. We realize these errors are likely correlated, but for now we 

will assume that each separate error severity allocation is independent. A multinomial logit model was estimated for 

the data at TRACONs and at ARTCCs. The alternative used as the base is the Proximity Event alternative. The 

estimation results are shown below in Table 9 and Table 10. 
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TABLE 9 TRACON Logit Model Results 

 Variable Estimate  Std. Error 

 ASC  -3.73  2.87 

 Traffic (Daily Operations) -0.11  0.22 

 Percent Itinerant  4.74  2.45 

 Percent IMC  0.048 * 0.27 

 Average Temp (F)  -0.013   0.005 

Category Average Wind Speed (knots)  0.024 * 0.016 

C OEs Average Visibility (miles)  0.074  0.042 

 N90 Audit  0.33  0.29 

 Old Rule  0.47  0.14 

 Spring  0.15 ** 0.18 

 Summer  0.56  0.24 

 Fall  0.22 * 0.20 

 Consolidated TRACON  0.31  0.21 

 ASC  -3.61   3.09 

 Traffic (Daily Operations) -0.17  0.24 

 Percent Itinerant  5.48 * 2.59 

Category Percent IMC  -0.86 ** 0.31 

A&B OEs Average Temp (F) -0.015 * 0.006 

 Average Wind Speed (knots)  -0.013  0.018 

 Average Visibility (miles)  0.003  0.048 

 N90 Audit  -0.54  0.33 

 Old Rule  0.68 ** 0.15 

 Spring  0.58 ** 0.21 

 Summer  0.89 ** 0.28 

 Fall  0.67 ** 0.22 

 Consolidated TRACON  0.73 ** 0.23 

** Significant at 1% level 

* Significant at 5% level    

 

Some things to note from these results are that the traffic coefficient for both alternatives are not 

significant, which means that the number of operations does not appear to influence the severity of an OE, holding 

all else constant. This is consistent with the results from the previous models, where the traffic coefficient was 

roughly the same for each of the three models, indicating that all errors increase with traffic at the roughly the same 

rate.  

The percent itinerant variable is positive and significant for the A&B alternative. This implies that a higher 

percentage of itinerant (vs through) operations more likely results in a category A or B error rather than a proximity 

event or C error. This follows our intuition, because itinerant operations are a fundamentally different type of traffic 

compared to through operations and are likely more difficult to control. Another interesting result is that the IMC 

variable is negative and significant for the A&B alternative, but in our Poission Regression model (Table 3), we 

found that the IMC variable was not significant in the A&B model. This suggests that better weather (more time 

operating in IMC) does not influence the occurrence of category A&B operational errors. However, given an OE 

occurs, if it occurs in poor weather (higher percentage IMC conditions), then it is less likely to be a severe error. 

This might be somewhat counter-intuitive, but one possible explanation for this is that controllers may be more alert 

during times of poor weather, and thus any errors that occur are likely to be minor in severity. 

The Old Rule variables are positive and significant, which is consistent with the increase in proximity 

events the separation conformance metric went into effect. The relative magnitude of these variables represent the 

relative composition of errors before the rule went into effect, which tended to have more severe errors than after the 

rule went into effect. The Consolidated TRACON variable has a coefficient that is positive and significant only for 
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the A&B category, indicating that errors at these facilities tend to be more severe than the errors at smaller facilities, 

even after controlling for traffic, weather, and percentage of itinerant operations. This is likely an indication of the 

different traffic composition at these facilities, due to their large nature, but we did not investigate this explicitly in 

this study. 

TABLE 10 ARTCC Logit Model Results 

 Variable Estimate  Std. Error 

 ASC  -0.77  0.52 

 Traffic (Daily Operations) 0.027  0.030 

 Average Temp (F) 0.002  0.004 

 Average Visibility (Miles)  0.04  0.04 

 Percentage Stations with Fog  0.94 * 0.54 

Category Percentage Stations with Rain 0.20  0.18 

C OEs Year 2004  0.69 ** 0.24 

 Year 2005  0.65 ** 0.18 

 Year 2006  0.08  0.17 

 Year 2007  0.17  0.17 

 Year 2008  0.12  0.17 

 Spring  0.10  0.13 

 Summer  0.14  0.17 

 Fall  0.11  0.14 

 ASC  -2.54 ** 0.72 

 Traffic (Daily Operations) 0.04  0.04 

 Average Temp (F) 0.02 ** 0.005 

Category Average Visibility (Miles) 0.08  0.05 

A&B OEs Percentage Stations with Fog 1.14  0.72 

 Percentage Stations with Rain -0.04  0.25 

 Year 2004  0.14  0.33 

 Year 2005  0.54 ** 0.23 

 Year 2006  -0.40 * 0.23 

 Year 2007  -0.17  0.23 

 Year 2008  -0.25  0.22 

 Spring  -0.08  0.18 

 Summer  -0.47 * 0.23 

 Fall  -0.19  0.19 

** Significant at 1% level 

* Significant at 5% level    

 

The results from the ARTCC model indicate that number of daily operations does not affect the severity of 

a given OE, similar to what was shown in the TRACON results. Since the airspace regions for ARTCCs are much 

larger than those for TRACONs, we use average temperature is our best proxy for overall good weather, where 

higher temperatures indicate better weather, all else equal. The percentage stations reporting fog and rain are 

somewhat indicative of poor weather, but are not very significant in our model. The primary significant result is that 

the average temperature for the category A&B errors is positive with a low standard error. This indicates that higher 

temperature (good weather) will result in an error more likely being a severe category A or B error, rather than a 

category C error or proximity event. This possibly counter-intuitive result is consistent with the TRACON model. 

Controllers could be more alert during times of poor weather, and thus the errors that do occur are less likely to be 

severe. 

Conclusions 

Operational errors in terminal radar approach control (TRACON) an air route traffic control center (ARTCC) 

facilities were modeled using Poisson regression. The daily OE count at each facility was used as the dependent 

variable while operational and weather measures were used as the independent variables. The rate of daily OE 

occurrences at TRACON facilities was found to increase with the square of daily traffic, which is consistent with 

previous research and general intuition. It was also found that consolidated TRACON facilities behave effectively as 

a sum of several other, smaller TRACON facilities in terms of how the number of OEs is influenced by traffic. The 
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rate of occurrence of all types of OEs at TRACONs has been found to increase after the introduction of the 

separation conformance severity metric.  

Possible under-dispersion exists for the models of the two least severe OE types for the TRACON facilities. 

The A & B model has a very low deviance likely because of very sparse data. Our Poisson regression model 

provides a good fit for only one facility for all error types, but fits most of the facilities well for the most severe error 

types. That is, the most severe error types are the easiest to predict. 

The ARTCC models indicate a traffic exponent between 2.5 and 2.6, which is higher than the value of 2 

obtained for the TRACON models. This could be an indication of a different relationship between traffic and 

controller workload in the en route airspace. The way OEs are identified in the TRACON airspace is far different 

than the en route airspace, however, so there could be many unidentified factors that contribute to this difference. 

Weather variables such as fog and rain both appear to increase the occurrence of all types of OEs, although fog at a 

higher rate than rain. 

The results from the two logit models suggest that the number of daily operations does not significantly 

affect the severity level of an OE. A higher percentage of itinerant operations at TRACON facilities imply a higher 

chance of an OE being severe (category A or B). A high percentage of itinerant operations is indicative of high 

traffic complexity. We might expect a high traffic complexity to increase the occurrence of OEs, but that is not the 

case from the Poission Regression results. Instead, we find that high traffic complexity increases the severity of an 

OE, given one occurs. For both TRACON and ARTCC facilities, we find that poor weather decreases the likelihood 

of an error being severe (category A or B). Poor weather conditions could be capturing higher controller awareness, 

which might influence the severity of errors more than simply the operating conditions. 

Future Work 

Future work could include using more information about each operational error than we included. Although our goal 

was to disaggregate our data as much as possible, we still have daily counts of operational errors, traffic, and 

average weather variables. Using the exact conditions in the sector at the time the OEs occurred could be more 

representative of the true causes of these rare events.  

Additional models could be used, such as zero-inflated Poisson regression, to more accurately model the 

large amount of zeros in the data set. Our model could also be modified to somehow consider the exact way the 

consolidated TRACONs are acting like the sum of a number of smaller TRACONs. Detailed operational 

characteristics of these large consolidated facilities would be needed to perform this analysis, however. Also, other 

effects of policy changes could be investigated if different time periods were used. For example, the implementation 

of the Air Traffic Safety Action Program or the Traffic Analysis Review Program will both affect the way OEs are 

reported in the TRACON environment. 
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