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1 Introduction

Efficient design of discrete choice experiments is essential to obtain precise estimates for the
coefficients in the choice models. We assume that the choice behavior can be represented by
the mixed (or random coefficients) logit choice model. As parameters are estimated at the
individual level, the mixed logit choice model mirrors real choice behavior better.

As the generation of an aggregate efficient design for the mixed logit choice is computa-
tionally cumbersome (cfr Bliemer and Rose, 2010), Yu et al. (2011) introduced individualized
Bayesian D-efficient designs to elicit choice data for the mixed logit choice model. Individual-
ized choice designs are sequentially generated for each person separately by summarizing the
answers to previous choice sets as prior information to efficiently select the next best set. They
are shown to yield more efficient estimates for the mixed logit choice model than an aggregate
design optimized for a simpler model (Danthurebandara et al., 2011; Yu et al., 2011).

Despite the increasing computational capacity of modern computers, the generation of the
next D-efficient choice set still takes seconds for small settings. This paper presents new design
criteria that have been used in optimal test design to construct individually adapted choice
designs for the mixed logit choice model and compares them with the D-efficiency criterion
that has often been used is this context.

Recently, three novel selection rules, based on Kullback-Leibler information, have been in-
troduced in the test design literature. For individualized test design, the new criteria have
been shown to be very useful. In this paper we apply the Kullback-Leibler criteria to design
individualized choice experiments. Their implementation in a discrete choice setting is shown
to be efficient and very fast.

2 Methodology

2.1 The mixed logit choice model

In a discrete choice experiment respondents must choose their preferred travel option in a series
of choice sets contrasting multiple alternatives. The mixed logit choice model probability that
a person n chooses alternative k in choice set s (with K alternatives) equals

pksn(βn) =
ex′

ksnβn∑K
i=1 e

x′
isnβn

, (1)
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with xksn and βn both p-dimensional vectors representing respectively the attribute levels of
the kth alternative and individual n’s coefficients.

Conditional on βn and given the choice design XS
n with S choice sets and corresponding

choices yS
n , the likelihood of the model for respondent n is thus given by

L(βn|yS
n ,X

S
n) =

S∏
s=1

K∏
k=1

[pksn(βn)]yksn , (2)

with XS
n = (x′11n, ...,x

′
K1n, ...,x

′
KSn)′ the design matrix stacking the attribute levels of all profiles

in the choice experiment and vector yS
n comprising the elements yksn which are 1 if person n

chooses alternative k in choice set s and zero otherwise.
To model the aggregate choice behavior in the population the mixed logit choice model

assumes a heterogeneity distribution, in most cases a multivariate normal distribution, over the
individual-specific coefficients:

βn ∼ N (µ,Σ). (3)

The unconditional likelihood for respondent n then equals

L(µ,Σ|yS
n ,X

S
n) =

∫
L(βn|yS

n ,X
S
n) φ(βn|µ,Σ) dβn, (4)

with φ the normal density.

2.2 Efficient individualized design for the mixed logit choice model

Here we discuss the algorithms to construct individualized choice designs for the mixed logit
choice model based on either D-efficiency or Kullback-Leibler information.

2.2.1 Minimum posterior weighted D-error: a Fisher information design criterion

D-efficient designs minimize the generalized variance of the parameter estimates (Atkinson
et al., 2007). Assuming Bayesian estimation, the logarithm of the posterior will be used here
instead of the logarithm of the likelihood yielding a Bayesian Fisher information matrix (BFIM).
Given a design XS

n for respondent n and assuming a multivariate normal prior with covariance
matrix Σ0, the Bayesian Fisher information matrix becomes

IBFIM(βn,X
S
n) =

S∑
s=1

X′sn(Psn − psnp
′
sn)Xsn + Σ−10 , (5)

with Xsn the design matrix of choice set s, Psn = diag(p1sn, ..., pKsn) and psn = (p1sn, ..., pKsn)′.
Instead of maximizing the determinant of this information matrix, we minimize the inverse,

denoted as the D-error and proportional to the volume of the confidence ellipsoid around the
parameter estimates. Moreover, Bayesian D-efficient (DB) designs are obtained, instead of
locally efficient designs, by minimizing the expectation of the D-error over a prior distribution
of the individual-specific coefficients.

At the start of the choice experiment there is no choice data available. Therefore a multi-
variate normal prior is assumed and the following criterion is minimized over all possible choice
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sets to select the first set in the design

DB =

∫
det[IBFIM(βn,X

1
n)]−1/p f(βn) dβn, (6)

with f(βn) ≡ φ(βn|µ0,Σ0).
Yet, when a respondent has completed some choice sets, say s−1, the prior information can

be updated in a Bayesian way with the choice data available. The posterior distribution of the
individual-specific coefficients given the choices of the s− 1 previous choice sets then equals

f(βn|ys−1
n ) =

L(βn|ys−1
n ,Xs−1

n ) φ(βn|µ0,Σ0)∫
L(βn|ys−1

n ,Xs−1
n ) φ(βn|µ0,Σ0) dβn

. (7)

Note that f(βn|ys−1
n ) ≡ f(βn|ys−1

n ,Xs−1
n ,µ0,Σ0), but the short form is applied for notational

convenience.
This updated posterior is now used as the weighing distribution in the Bayesian D-efficiency

criterion to select the next best choice set for respondent n by minimizing

DB =

∫
det[IBFIM(βn,X

s
n)]−1/p f(βn|ys−1

n ) dβn, (8)

with Xs
n the design matrix including the s − 1 perceived choice sets and the next sth choice

set for respondent n. An additional set in an individualized choice experiment is thus obtained
by minimizing the design’s D-error, weighted over the posterior distribution of the individual
coefficients, hence “minimum posterior weighted D-error”. The process of alternately updating
the posterior distribution of the coefficients with additional choice data and using this update
to efficiently generate the next choice set can be continued until a specific amount of sets is
administered.

2.2.2 Kullback-Leibler information design criteria

The Kullback-Leibler divergence, also denoted as the Kullback-Leibler distance or the Kullback-
Leibler information, between two density functions f and g of a continuous variable X is given
by (Kullback and Leibler, 1951)

KL(f, g) =

∫
f(x) log

f(x)

g(x)
dx. (9)

The Kullback-Leibler divergence is commonly interpreted as a measure of distance between two
densities.

In order to select the next best choice set for a specific respondent, one maximizes the
distance between the current posterior of the coefficients (obtained with the choice data at
hand) and the updated posterior one would obtain with the additional response information
from the next choice set. Since a set in a choice experiment comprises multiple alternatives,
we take the expectation over all possible choices and maximize the expected Kullback-Leibler
distance between subsequent posteriors (Mulder and van der Linden, 2010).

Assume respondent n has completed s− 1 choice sets. The sth choice set in his/her design
is then efficiently selected by maximizing

KLP =
K∑
k=1

π(yksn|ys−1
n ) KL[f(βn|ys−1

n ), f(βn|ys−1
n , yksn)] (10)
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over all possible sets, with f(βn|ys−1
n ) and f(βn|ys−1

n , yksn) updated posteriors as in (7). Note
that yksn implies here that the kth alternative would be chosen in choice set s. The weights in
(10) are defined as

π(yksn|ys−1
n ) =

∫
pksn(βn) f(βn|ys−1

n ) dβn (11)

To select the first choice set in the design, when no choice data is available yet, the current
posterior f(βn|ys−1

n ) in (10) and (11) is replaced by the normal prior f(βn) ≡ φ(βn|µ0,Σ0):

K∑
k=1

π(yk1n) KL[f(βn), f(βn|yk1n)] (12)

with

π(yk1n) =

∫
pk1n(βn) φ(βn|µ0,Σ0) dβn. (13)

Related to Kullback-Leibler divergence is mutual information, which for two continuous
variables X and Y is defined as (Mulder and van der Linden, 2010; Weissman, 2007)

IM(X, Y ) =

∫
Y

∫
X

f(x, y) log
f(x, y)

f(x)f(y)
dxdy. (14)

It is the Kullback-Leibler distance between the joint distribution of X and Y and their distri-
bution in case of independence.

We follow Mulder and van der Linden (2010) and Wang and Chang (2011) and maximize
the mutual information between the current posterior distribution of the individual coefficients
and the posterior weighted choice probabilities for the alternatives in the next set, given the
choice data of the previously administered sets. The criterion to be maximized over all possible
sets is

MUI =
K∑
k=1

[∫
pksn(βn) log pksn(βn) f(βn|ys−1

n ) dβn − π(yksn|ys−1
n ) log π(yksn|ys−1

n )

]
. (15)

From (15) it can be concluded that also MUI, just as KLP , only requires the computation of
posterior weighted choice probabilities for the alternatives in the next choice set.

The final design criterion used in this research is based on entropy. For a continuous variable
X and density f(x), the entropy is defined by (Wang and Chang, 2011; Weissman, 2007)

H(X) = −
∫
f(x) log f(x) dx (16)

and is a measure of uncertainty. To efficiently select a subsequent choice set in an individual-
ized choice experiment, we minimize expected posterior entropy (Wang and Chang, 2011) or
equivalently maximize

ENT =
K∑
k=1

π(yksn|ys−1
n )

∫
f(βn|ys−1

n , yksn) log f(βn|ys−1
n , yksn) dβn. (17)
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Experimental setup µ Σ
Scenario 1 33/2/15 (-0.5, 0, -0.5, 0, -0.5, 0) 0.5× I6
Scenario 2 2× 3× 2× 3/3/15 (-0.5, -0.5, 0, -0.5, -0.5, 0) 0.5× I6
Scenario 3 3× 24/2/15 (2.403, 1.648, 0.976, -0.613, -0.188, 2.008) Appendix C
Scenario 4 3× 2× 3/3/15 (0.419, 0.700, 1.355, 1.638, 1.690) Appendix C

Table 1: Overview of the scenarios in the simulation study

3 Simulation study and results

In this section, we compare the criteria DB, KLP , MUI and ENT introduced above with
respect to their efficiency and practicality in designing individualized choice experiments for
the mixed logit choice model. We consider 4 scenarios that are summarized in Table 1. We
assume 50 respondents in the experiments.

The third and the fourth scenario are based on empirical studies from respectively Carlsson
et al. (2003) and Espino et al. (2008). In scenario 3 the profiles are defined by five attributes, the
first with three levels, the remaining four with two, and choice sets include two alternatives. In
the final setup there are three attributes with respectively 3, 2 and 3 levels and three alternatives
in each set. In both cases, choice experiments with 15 sets are designed. Note that in agreement
with the assumptions in Carlsson et al. (2003) and in Espino et al. (2008) the attributes are
now dummy coded. The true values for Σ are given in Appendix C.

In all scenarios the initial prior f(βn) used in the design criteria is assumed to be a
multivariate normal distribution for which the prior values µ0 and Σ0 equal the true values of
µ and Σ in each scenario.

3.1 Estimation and prediction accuracy

We first discuss the accurateness of the estimates for the population parameters µ and Σ in
the mixed logit choice model. To compare the estimation accuracy obtained with the different
design criteria, we compute the root-mean-squared-errors RMSEµ and RMSEΣ which measure
the estimation error for respectively µ and Σ. They are given by

RMSEµ =

√
(µ̂− µ)′(µ̂− µ)

p
, (18)

with µ̂ and µ respectively the estimates and the true values of the mean effects and p the
number of coefficients in the model and

RMSEΣ =

√
(σ̂ − σ)′(σ̂ − σ)

pΣ

, (19)

with σ stacking all the unique elements from Σ, σ̂ the estimates and pΣ equal to p(p + 1)/2,
the number of elements in σ.

Note that for each design algorithm and for each scenario, the generation of the choice
designs and the estimation of the mixed logit choice model was repeated 100 times. The mean
RMSEµ and RMSEΣ values are given in Figure 1 for each scenario and all four design criteria.
In the first two and the fourth scenario, no significant differences in RMSEµ and RMSEΣ are
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Figure 1: Mean RMSEµ and RMSEΣ values obtained with KLP , MUI, ENT and DB for the
different scenarios

observed. The population parameters in the model are estimated equally accurate with all four
design criteria. In scenario 3 however, KLP outperforms the other methods as its RMSEµ and
RMSEΣ are significantly smaller than the corresponding estimation errors obtained with MUI,
ENT and DB.

Besides modeling aggregate choice behavior, it might also be of interest to have a view on
individual preferences and to obtain good estimates for the coefficients βn in the mixed logit
choice model. Therefore, in addition to RMSEµ and RMSEΣ, the root-mean-squared-error
RMSEβ is also compared between the design criteria:

RMSEβ =

√√√√ 1

N

N∑
n=1

(β̂n − βn)′(β̂n − βn)

p
, (20)

with β̂n and βn respectively the estimates and the true values for the coefficients of person n
and N the number of respondents. Figure 2 shows the mean values of the RMSEβ over the 100
simulations for each design criterion and each scenario.

With respect to the individual coefficients, KLP again outperforms the remaining methods
in scenario 3 as its RMSEβ value is significantly smaller than the estimation errors of MUI,
ENT and DB. For all other scenarios, no clear differences in estimation error are observed.

3.2 Computation time

The main asset of the Kullback-Leibler design criteria is that they are much easier to compute
than the DB criterion. Although computing KLP , MUI and ENT also requires the weighing
of choice probabilities over sequentially updated posteriors, the criteria do not involve the time
consuming computation of the determinant of the Fisher information matrix, incorporating all
sets in the choice experiment. Consequently, selecting the next best set in an individualized
choice experiment is much faster with KLP , MUI and ENT than with DB.
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Figure 2: Mean RMSEβ values obtained with KLP , MUI, ENT and DB for the different
scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4
KLP 0.074 1.726 0.207 0.219
MUI 0.082 1.773 0.215 0.223
ENT 0.090 1.972 0.242 0.246
DB 1.789 35.689 5.207 3.855

Table 2: Average computation time (seconds) for selecting one additional choice set with KLP ,
MUI, ENT and DB

To demonstrate this, Table 2 displays the average computation time (in seconds) to sequen-
tially generate one additional set in a choice design using respectively KLP , MUI, ENT and
DB as selection rule. The decrease in computation time from using the Kullback-Leibler design
criteria instead of DB is impressive.

4 Conclusion

Individualized choice experiments are designed with respect to the individual preferences of a
specific respondent, sequentially taking previous choices into account to select the next choice
set. With individual-specific coefficients in the model, designing choice experiments at an in-
dividual level is more efficient than using an aggregate design approach. Three new design
criteria, alternative to D-efficiency, are presented to speed up the construction of the individu-
alized designs.

In a simulation study the Kullback-Leibler criteria are compared with D-efficiency under
various experimental settings. The conclusion is clear: the design efficiency of the four criteria
to estimate the mixed logit choice model is equivalent. As the Kullback-Leibler based designs
are much faster to compute than those based on the D-efficiency criterion, these are to be
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preferred.

A Matrices Σ in scenario 3 and 4

Σ3 =


6.605 6.784 3.299 2.059 2.246 1.855
6.784 8.231 4.838 3.018 3.290 2.721
3.299 4.838 7.007 −0.547 2.424 −0.186
2.059 3.018 −0.547 5.392 2.339 2.344
2.246 3.290 2.424 2.339 3.964 1.663
1.855 2.721 −0.186 2.344 1.663 9.358



Σ4 =


0.047 0 0 0 0

0 0.906 0 0 0
0 0 2.632 0 0
0 0 0 0.568 0
0 0 0 0 1.107
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