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Abstract 

 

Using a single line model, it has been shown recently that the presence of a stringent financial 

constraint induces a less than optimal bus frequency and larger than optimal bus size. This 

occurs because the constraint induces a reduction of the importance of users’ costs (their 

time); in the extreme, users’ costs disappear from the design problem. In this paper we show 

that such a constraint also has an impact on the spatial structure of transit lines. This is done 

departing from the single line model using an illustrative urban network that could be served 

either with direct services (no transfers) or with corridors (transfers are needed). First, the 

optimal structure of lines is investigated along with frequencies and vehicle sizes when the 

full costs for users and operators are minimized (unconstrained case); the optimal lines 

structure is shown to depend upon the demand level, the values of time and the cost of 

providing bus capacity. Then the same problem is solved for the extreme case of a stringent 

financial constraint, in which case users’ costs have relatively little or no effect in determining 

the solution; in this case the preferred outcome would be direct services under all 

circumstances, with lower frequencies and larger bus sizes. The impact of the financial 

constraint on the spatial structure of transit lines is shown to be caused by the reduction in 

cycle time under direct services; the introduction of users’ costs in the objective function 

makes waiting times reverse this result under some circumstances. 
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1. INTRODUCTION 

 

There is an emerging discussion regarding the financial aspects, property and contracts in the 

provision of public transport services. By the early eighties it had been shown that the optimal 

operation of a public transport system is linked to an optimal price that falls below average 

cost, which induces an optimal subsidy (Jansson, 1979, 1984). This has received recent 

criticism; for example, van Reeven (2008) develops a model aimed at showing that a profit-

maximizing operator allowed to take into account the demand effects of its pricing would 

offer a frequency at least as high as a welfare-maximizing one with no welfare losses; later 

on, Basso and Jara-Díaz (2010) showed that this result depends crucially on demand 

inelasticity. By the same period Parry and Small (2009) concluded that in most of the real 

cases they analyze, increasing transit subsidies would increase welfare although subsidies 

already cover a large proportion of operators’ cost. Presently, the financial aspects of public 

transport seem to dominate over optimal pricing and welfare, which makes Jansson’s (2005) 

question relevant: “Why is optimal bus transport pricing applied in hardly any urban area of 

the world?” To this we add that the link between the financial aspects and the design of the 

public transport system has been absent from the debate. 

What has been observed in transit systems is that fares and subsidies are usually determined 

outside the technical domain, not always accounting for the impact on the main design 

variables: frequency of services, vehicle sizes and spatial coverage. This translates into a 

financial constraint on the design of a public transport service, which has been analyzed by 

Jara-Díaz and Gschwender (2009) by means of a microeconomic analysis of a single transit 

line. They showed that imposing such a constraint leads to a decrease in the relative weight of 

users’ time in the cost function through the hidden reduction in the weight given to their time 

values in the associated optimization problem. Analytically those time values get divided by 

one plus the multiplier of the constraint, which makes users’ cost weigh less relative to 
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operators’, causing lower frequencies and larger buses in comparison to the optimal values in 

the absence of a financial constraint. This was offered as a theoretical explanation for the 

resulting fleet reduction and use of larger vehicles in the redesign of the bus services in 

Santiago, Chile, where a self-financial constraint was imposed while keeping the previous 

average fare; this had a very negative impact on service quality and users’ costs. In this paper 

we want to examine the theoretical effect of a stringent financial constraint on a third most 

important component from a strategic viewpoint: the spatial structure of transit lines.  

This spatial aspect of the design cannot be studied using a single line model and requires 

extension to a network. In real (urban) cases, the transit network design problem has been 

based mostly on heuristics (Kepaptsoglou and Karlaftis, 2009), such that a generic design of 

routes is usually adapted incrementally following reasonable procedures. Here we will deal 

with the generic design at a strategic level for policy analysis; from this viewpoint, the spatial 

dimension has been sometimes introduced as a continuous design variable - subject to 

optimization - in the form of some measure of the (regular) spacing between consecutive 

lines, as done by Chang and Shonfeld (1991), who considered the distance on a rectangular 

grid, or Tirachini et al (2010), who considered the angle on a circular city. Analyzing lines 

structure, though, requires a departure from these continuous approaches where each line 

operates similarly. There are two meaningful alternative spatial designs that can be used to 

represent real generic structures. In the first structure users are served mostly with direct lines 

that follow closely the spatial pattern of demand, which makes transfers on the main OD pairs 

unnecessary but present route overlapping along the main corridors; this structure has been 

present in many capital cities in South America. An alternative option is to design a set of bus 

lines such that users can make the necessary transfers to reach the corresponding destinations; 

this type of bus lines structures relying on transfers and avoiding overlapping are typically 

observed in European metropolitan areas. However, it is not evident which one is better.  
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Departing from Mohring’s (1972) and Jansson’s (1984) single line transit cost analysis, Jara-

Díaz and Gschwender (2003b) considered several lines in a network, introducing the choice 

between direct services – without transfers – and corridors where transshipments are 

necessary. They studied these alternative structures aimed at minimizing total costs (users and 

operators), showing that the outcome might depend on patronage. When patronage is 

relatively low, the ‘‘full coverage’’ of direct lines may be neither in the interest of the bus 

company nor in that of the passengers because of the low frequencies that would very 

probably result. However, if patronage is large enough it may well happen that direct services 

can operate with sufficiently high frequencies and avoiding transfer time.  

As explained earlier, we want to study the effect of a stringent financial constraint on the 

spatial structure of services. This will be done by comparing the total cost function, i.e. the 

minimization of users’ plus operators’ costs for exogenously given patronage levels (optimal 

design benchmark), against the operators’ cost function, i.e. the minimum of operators’ costs 

only, which has been shown to be equivalent to the extreme case caused by a stringent 

financial constraint. The question, then, is how sensitive the optimal spatial structure of lines 

is – along with frequency and bus size - to the consideration of users’ costs (time). To answer 

this we analyze a spatial demand structure on a simple but representative network, searching 

not only for frequencies but also for the lines structure and vehicle sizes that minimize a) total 

cost (users and operators) and b) operators’ cost only. Results are comparatively presented, 

including service structures, fleet sizes needed, in-vehicle travel times and waiting times. It is 

shown that the best structure differs depending on the inclusion of users’ costs in the objective 

and varies with the demand level.
1
  

                                                
1
 The issue of service structure has also been analyzed by Jara-Díaz and Basso (2003) in a three nodes network in relation with economies of 

spatial scope, showing that for the case of equal flows between each of the six origin-destination pairs and equal distances, direct services are 

less costly for an operator than a hub-and-spoke structure.  This type of discussion resembles that in air transport regarding the use of hubs 

(inducing transfers) versus fully connected networks (direct services; no transfers needed) for profit maximizing and socially optimal 

airlines. For example, Hendricks et al (1995) show that an unregulated airline might choose either structure depending on var ious elements 

including demand level. Using a simple network structure Brueckner (2004) shows that a monopolistic airline would be biased in favor of the 
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As background, in Section 2 we explain the essence of how a financial constraint operates 

diminishing the importance of users´ costs in a single line case. Then in Section 3 we add the 

spatial aspect of design in a representative network where the alternative lines structures are 

two corridor lines with transfers or four direct lines without transfers. As the (optimal) 

unconstrained case is a benchmark, it is developed there in order to show the general results. 

The case with the financial constraint is presented and discussed in Section 4 in order to 

emphasize that there is an effect on lines structures (also on frequency and bus size). Section 

5 concludes. 

 

2. BACKGROUND: FINANCIAL CONSTRAINT IN THE ONE LINE CASE 

Following Jansson (1980, 1984), Jara-Díaz and Gschwender (2009) analyzed total cost 

minimization (i.e. users’ plus operators’ costs) for a public transport corridor used by a total 

of Y passengers per hour homogeneously distributed along the corridor, all of them traveling a 

fraction β of the corridor’s length. Vehicles operate at a frequency f. Defining T as the time in 

motion of the vehicle in a cycle
2
 and t as the time that a passenger needs to board or alight, 

cycle time tc is given by  fYtTtc 2 . As frequency is the ratio between fleet size (B) and 

cycle time then B = fT + 2tY. The cost per vehicle-hour for the operator is given by c = c0 + 

c1K, where c0 and c1 are constants and K is vehicle size. The users’ values of in-vehicle and 

waiting times are Pv and Pw respectively. They impose a financial constraint that restrains the 

operators’ cost to a maximum of A, exogenously given because of, say, budgetary reasons or 

general policy (e.g. an exogenously imposed fare and no subsidies). As the total value of the 

resources consumed VRC increases with K (the derivative of VRC with respect to K is 

                                                                                                                                                   
hub-and-spoke structure and would choose lower than optimal frequencies and aircraft size. Pels et al (2000) conclude that “a fully connected 

network will be more profitable if the level of demand is relatively high, fixed costs are low and economies of density are low”.  
2 Time in motion T includes time for acceleration/deceleration, time to open and close the doors and any other component of the cycle time 

different from the time at stop for boarding and alighting purposes. 
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positive), K is equal to the resulting load size, which depends on the optimisation variable f, 

i.e. 

   
f

Y
fkK  . (1) 

Then the restricted social optimisation problem is (Jara-Díaz and Gschwender, 2009) 
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As the service is assumed to have predetermined bus stops location, access time cannot be 

optimized and is not included in equation (2).  

If μ is the multiplier of the financial constraint, then the frequency f
~

 and bus size K
~

resulting 

from problem (2) obtained by Jara-Díaz and Gschwender (2009) are 
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As shown in Jara-Díaz and Gschwender (2009), the multiplier μ increases as A diminishes. 

This means that the tighter the budget, the larger is μ, diminishing the role of time values on 

both frequency and bus size. Two extreme cases can be identified. First, when the financial 

constraint is not active (μ=0) the unconstraint optimal frequency f* and optimal vehicle size 

K* are obtained. Second, for µ   (which occurs when A is set exactly at the minimum 

operators’ cost for each Y level), the frequency and bus size obtained corresponds to the 

minimization of operators cost only because all terms with values of time disappear. Figure 1 
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shows the frequency and bus size for both extreme cases. An intuitive interpretation is that 

“any given passenger volume can be served with different combinations of frequency and 

vehicle size, but users’ costs would be lower for high frequency-small vehicles combinations 

while operators’ costs are favoured by low frequency-large vehicles combinations, up to a 

limit” (Jara-Díaz and Gschwender, 2009, p69). 

 

Figure 1: Frequency and vehicle size as a function of the number of passengers (Y), for 

both extreme cases of the financial constraint 
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Source: Jara-Díaz and Gschwender, 2009. 

 

 

In summary, imposing a financial constraint acts on the optimal design diminishing frequency 

and increasing bus size for all levels of demand. This happens because the constraint operates 

in such a way that it is equivalent to reduce the importance of users’ time in the design 

problem. Does a financial constraint also affect the spatial structure of transit lines? In order 

to study this, we will analyze the convenience of different lines structures to serve a given 

demand pattern on a network for the two extreme cases presented above. First, we will find 

the best lines structure for a total cost minimization objective as an extreme case in which 

there is no financial restriction at all and µ=0 ; second, we will obtain the lines structure that 

minimizes operators cost only as the case in which the financial constraint is extreme such 

that µ    and users cost are ignored. 
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3. DESIGN OF LINES STRUCTURES ON A NETWORK: METHODOLOGY AND 

APPLICATION TO A CASE WITHOUT FINANCIAL CONSTRAINT 

 

The spatial structure of transit lines will be analyzed solving the design problem for two basic 

lines structures on the simple but representative network presented in Figure 2. Following 

Jara-Díaz and Gschwender (2003b), we will consider the direct lines structure, which links 

every OD pair such that users need no transfers, and the corridor lines structure, which tries 

to minimize the total length of the lines, forcing transfers in some OD pairs. Both line 

structures cover the same network and therefore do not affect access time, which is then 

irrelevant in the optimization. Unlike Jara-Díaz and Gschwender (2003b), operators’ cost will 

depend linearly on vehicle sizes, which becomes a design variable that adds to frequencies 

and lines structure. 

Figure 2: Direct and corridor lines structures. 
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 The total demand entering the system is Y passengers per hour distributed equally 

among the OD pairs, i.e. Y/8 passengers on each pair. 

 Cycle and in-vehicle times are affected by passengers boarding and alighting times. 

 Boarding and alighting occurs sequentially at all available doors. 

 Operators’ cost depends linearly on vehicle size. 

 Every line uses only one type of vehicles (equal vehicle size within each line). 

 Waiting time is a proportion  of the headway (=0.5 if buses and passengers arrive 

regularly, which is assumed in the numerical simulations of the appendixes). 

Let T0/2 be the vehicle travel time between two consecutive nodes of the network in one 

direction without boarding and alighting times, and let t be the time that a user needs to board 

or alight. The cycle time tc for each line has two components: time in motion - given by 2T0 - 

and the time at the stops where users board and alight – given by 2t times the number of users 

that board (and alight) a vehicle in a cycle. The number of users that board is composed by 

two groups: those that board at the origin and those that board in transfers. In the system, the 

number of transfers is given by the combination of the demand structure and the lines 

structure, which is 0 for direct lines and Y/4 for corridors, as only two OD pairs need a 

transfer (pairs ac and ed). Therefore the total number of passengers boarding is Y(1+τ), where 

τ is the average number of transfers per trip in each structure (0 and ¼ for direct and corridors, 

respectively). As the problem is symmetric regarding both the demand pattern and the lines 

structure, the frequency of service of each line, fi (and the fleet sizes Bi), will be the same for 

all lines within a structure (but different among structures) and passengers boarding are 

equally distributed for each structure among lines. Then the number of passengers that board 

and alight on each vehicle cycle is Y(1+τ)/fiN, where N is the number of lines for each 

structure (2 for corridor, 4 for direct).  

Therefore, cycle time for each line i is 
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Frequency of line i is the ratio between the fleet of the line and its cycle time: 
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The total value of the resources consumed is the sum of operators and users costs. Operators’ 

cost is (c0 + c1K) times the total fleet size from equation (8). Note that K is the ratio between 

the maximum load on a line (3Y/8)/(N/2) and fi .Therefore 
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Let us obtain users’ costs. Waiting time has two components: waiting at the origins and 

waiting at transfers. From the origins Y/2 passengers move two nodes and Y/2 move one node; 

long distance passengers wait /fi in either lines structure, but short distance passengers can 

use N/2 lines to move one arc such that their waiting time is /(N/2)fi. Passengers that transfer 

are τY and each waits /(N/2)fi at the transfer point. Then total waiting time tw is 

 

at origins, at origins, at transfer points
longdistance short distance

1 1 2

2 2 ( 2) ( 2) 2
w

i i i i

Y Y Y
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f N f N f f N N

     
       

 
      . (10) 

In-vehicle time for a passenger has three components: time in motion, time in the vehicle due 

to boarding and alighting of other passengers and time alighting. The first one is always T0 for 
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Y/2 (long distance) passengers and T0/2 for the remaining half, irrespective of the lines 

structure; this makes a total of (3/4)T0Y.  

Regarding time alighting we have two cases; the six OD flows that end at c or d and the 

remaining two OD flows that end at b. Each of the (3/4)Y passengers that end their trip at c or 

d have to alight as part of a group of (3/8)Y/(N/2) fi passengers per vehicle, because (3/8)Y 

passengers arrive and alight at either c or d using N/2 lines that operate at a frequency fi. As 

the first passenger alights immediately and the last has to wait t(3/8)Y/(N/2) fi, the average 

alighting time is half this total. Therefore, the total alighting time at c and d is 

 
23 3 9

/ ( / 2)
2 4 8 32

Ac d i

i

t Y Y tY
t N f

Nf
         , (11) 

Passengers alighting at b are of two types: those that end the trip there and those that transfer, 

such that the total is (Y/4)+ τY. This total comes from two origins (a and e) using N/2 lines 

from each, operating at a frequency fi such that the average alighting time is 

(t/2)((Y/8)+τY/2)/(N/2) fi. Then the total alighting time at b is 

 
2 2(1 4 )
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      . (12) 

The final component of in-vehicle time is the time at stops due to the boarding and alighting 

of other passengers. Note first that this delay is experienced neither by the Y/2 short-distance 

travelers nor by the τY that have to transfer, and this two groups are the ones that actually 

cause the delay on the remaining Y-(Y/2)-τY (all of them long distance) travelers.  

The best way to understand this type of delays is to look at a flow like a-d in both structures. 

In the direct lines structure, these passengers use line I and suffer the alighting of the short 

distance travelers a-b that split into the N/2 lines that serve that link (I and II), which makes 

(Y/8)/(N/2). The same number of passengers board at b in line I to go to d. Therefore, a total 

of (Y/2N)/fi board and alight each vehicle of line I at b, causing a total delay t(Y/2N)/fi. This 
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same analysis holds for the other three long-distance OD flows in the direct lines structure. In 

the corridors lines structure short distance passengers do not split (N/2=1) and passengers in 

line I experience the (additional) alighting of passengers that go from a to c and the boarding 

of those traveling from e to d, which adds up to all passengers that make a transfer, τY.  

Therefore, the delay experienced by each of the (Y/2)-τY passengers identified above can be 

expressed as t[(Y/2N)+ τY]/fi for both structures. Then the total delay for passengers in-vehicle 

due to other passengers boarding and alighting, tD, is given by 

 
2 1 1

2 2
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      . (13) 

The total in vehicle time tv is obtained adding time in motion (3/4)T0Y plus the results (11), 

(12) and (13), which yields 
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      , (14) 

Note that alighting time is explicitly included in tv, while boarding time is implicitly included 

in the waiting time as it is taken as a proportion  of the headway between buses, and this 

headway includes time at the bus stop. Nevertheless, as explained above, boarding time of 

other users affecting passengers that boarded in a previous stop are considered, because they 

do impact on travel time. Finally, note that equations (10) and (14) for tw and tv respectively 

are general expressions for waiting and in-vehicle times as functions of any given frequency 

(optimal or not), such that we observe both the effect caused by the parameters that define a 

line structure (N and τ) and the effect of frequency. This will be shown to be relevant in the 

discussion on the best line structures. 
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Now we have all the elements to minimize VRC with respect to fi. Replacing equations (10) 

and (14) in (9), first order conditions yield optimal frequency as 

    1

0 0

1 9
3 1 (2 1)(1 2 ) 2(1 2 )

2 8 2
i v w

Y
f tY c P N P N

N c T

    
              

  
  . (15) 

Equation (15) is a general expression for the optimal frequency of all lines in either structure. 

From this one can see directly that if

decreases with N and increases with τ within the range 

analyzed, which unambiguously show that frequency is lower for each of the four direct lines 

than each of the two corridor lines, as expected. This property does not translate into the 

optimal fleet size or the optimal bus size. The former is obtained by replacing (15) in (8), 

which yields 
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while the optimal bus size is given by 
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The VRC can be written as a function of fi replacing tw (10) and tv (14) in (9), which yields 
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Replacing optimal frequency (15) yields the cost function as 
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From the total generic cost function (19) and the values of τ and N, the optimal structure can 

be found by comparison. The third term is equal for both direct and corridor lines and cancels 

out. As shown numerically in Appendix 1 the first term of equation (19) is negligible with 

respect to the second term, which allows analytical comparison using only the square root. 

This yields that the total cost of direct lines is lower when
3
: 

 

 1

4
0.25

3
v

w

tY
c P

P
  



 

  (20)  

The probability of direct lines being the more convenient structure increases with the size of 

tY and with the ratios c1/Pw and Pv/Pw (which is consistent with Jara-Díaz and Gschwender, 

2003b). The intuition behind this is related with the relative importance of waiting and in-

vehicle times in each structure (including their prices) and with operators’ costs. To discuss 

this, it is convenient to examine first the lines structure that emerges when the financial 

constraint is stringent, i.e. when users’ costs are (implicitly) dismissed, which we present in 

the next section. Using this as the point of departure to understand the role of users’ time will 

be proved to be particularly useful. 

 

4. DOES A STRINGENT FINANCIAL CONSTRAINT AFFECT THE SELECTION 

OF LINES STRUCTURE? 

 

As explained above, in order to analyze if a financial constraint has an impact in the selection 

of the spatial structure of transit lines, we will consider now the other extreme case of the 

constraint multiplier, µ   , which brings to zero the contribution of the values of time, i.e. 

only operators costs are minimized. Solving the new problem, the frequency, fleet and vehicle 

size that minimize operators’ expenses only are 

                                                
3 For the numerical example in Appendix 1, the level of Y that makes the total cost of both structures equal using 

the approximation behind eq. (20) is 13.8% larger than the exact value when eq. (19) is used. 
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which can be also obtained imposing zero time values (Pw = Pv = 0) in equations (15) to (17). 

Then the minimum operators’ expense for each line structure is 

     0 1
0 0 1 0

3
2 1 2 3 1

2

T c
C Y c t c c T t  

       
 

 (24) 

The comparison of expression (24) for both line structures yields that direct lines are always 

better than corridors in this extreme case in which users costs are ignored. Unlike the no-

financial-constraint case, where the sum of users and operators cost is minimized, now 

corridor lines are never the best structure. This implies that a financial constraint does affect 

the selection of the best spatial structure of transit lines. 

Interestingly, the result of direct lines being always better than corridor lines when only 

operators costs are taken into account contradicts the intuition of Jara-Díaz and Gschwender 

(2003b, p276), who stated: “What would be the best spatial structure of services if users’ 

costs were not taken into account? Clearly, in that case direct services would never be an 

undoubtedly superior solution (at most, a tie).” Our new analyses correct this erroneous 

intuition. What happens is that avoiding transshipments - represented by τ - diminishes not 

only cycle time but also fleet size. This is clearly shown by expression (22), where fleet size 

increases with τ, which is nil for direct lines. Moreover, expression (23) shows that vehicle 

size decreases with τ. For short, direct lines with no transshipments imply a lower fleet of 

larger buses, which reinforces the result represented by Figure 1 for the single line case and, 
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as discussed earlier, induces a lower cost for every demand level because large vehicles are 

cheaper per place and capacity is adjusted to demand (vehicles always full). This is what lies 

behind the lower operators’ cost for direct lines in equation (24) where transshipments play 

the key role. 

What would be the impact on users’ cost - which has been ignored in this design – of 

implementing what is best for the operators only? Waiting time and in-vehicle time - 

generically shown in equations (10) and (14) respectively - can be now evaluated at the 

frequency that minimizes operators' cost in equation (21), which yields 
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Note that total waiting time is, in this case, independent of patronage; this evidently occurs 

because waiting time is inversely related with frequency which in turn increases linearly with 

Y. Evaluating equation (25) yields that, surprisingly, waiting time is always lower in 

corridors, which means that the effect of a larger frequency (eq. 21) dominates over the 

effect of transshipments, a very interesting result indeed. These two effects can be seen in the 

generic waiting time equation (10), where the line structure effect (1/2 + 1/N + 2τ/N) is larger 

for corridors (5/4) than for direct lines (3/4) because of the mandatory transfers, but the 

frequency effect reverses the result of the comparison. Analogously, evaluating equation (26) 

at the corresponding values of τ and N we confirm that when only operators' cost are 

minimized, in-vehicle time is always lower in direct lines, which was expected as tv is 

directly linked with cycle time. 

So, for synthesis, when only operators´ costs matter because of a financial constraint, the 

preferred design corresponds to a direct lines structure with a (relatively) small fleet of 
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(relatively) large buses, with a negative impact on users’ waiting time. Let us analyze how 

this changes when users’ costs enter the picture. 

Let us take this case of an extreme financial constraint - where direct lines are always the best 

- as the point of departure to understand why introducing users’ cost affects the best line 

structure (and the other design variables). As waiting time is lower for the corridor structure, 

one might think that when users’ costs are considered corridors could become the best 

structure whenever waiting time dominates over in-vehicle time (which is larger in corridors) 

plus operators’ costs. So a relevant question is how in-vehicle and waiting times vary when 

the design follows total cost minimization. Is waiting time still lower (and in-vehicle time 

larger) for corridors under this objective? Let us examine this. 

The expressions for the waiting and in-vehicle times are obtained replacing optimal frequency 

from equation (15) into equations (10) and (14) respectively. Evaluating these expressions for 

direct and corridor lines, it can be shown (Appendix 2) that in this case without financial 

constraint corridor lines always have the lowest waiting time and the largest in-vehicle 

time, just as in the case of the extreme financial constraint and for the same reason: in spite of 

the transfers needed in the corridor structure (lines structure effect) total waiting time is lower 

than in direct lines because the frequencies that passengers observe are higher (frequency 

effect).
4
 On the other hand, in-vehicle time is larger for corridor lines, because transfers imply 

a larger number of passengers boarding and alighting, increasing time at bus stops and cycle 

times. This explains the role played by the waiting time value Pw in the total cost minimizing 

condition (20) for the best lines structure. Larger Pw values decrease the probability of direct 

lines being the best ones, and this happens because, as we have shown, waiting times are 

always lower for corridors. Note that the contrary happens with the size of Pv.  

                                                
4
 It is worth noting that in our model transfers produce only additional waiting time. Neither the negative 

perception of transfers nor additional walking time is considered. 
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Corridor lines can be superior for low levels of demand when there is no financial constraint 

(total cost is minimized), according to result (20). Why is this? We do know what happens 

with waiting time (lower for corridors) and in-vehicle time (lower for direct). Regarding 

operators’ costs - obtained by replacing f* in the first term of equation (9) – it can be shown 

that neither direct nor corridor lines structure are systematically superior. As shown 

numerically in Appendix 3, for low values of Y the difference in waiting time dominates over 

the differences in the other two components, even in a region where operators’ cost is lower 

for direct lines. For short, for low demands each direct line results in low frequencies yielding 

large waiting times, which changes the optimal structure towards corridor lines when users’ 

costs are taken into account: the waiting time effect dominates. 

For completeness, let us analyze optimal fleet and vehicle size under each lines structure. The 

comparison of the fleet sizes using equation (16) is similar to the one made in the comparison 

of the total cost (19): the first term is much smaller than the second one and therefore the 

square root can be used for analytical comparison, yielding the same conditions described in 

(20): increasing tY, Pv/Pw or c1/Pw increases the probability of direct lines having the lowest 

fleet. Regarding vehicle size in equation (17) the conclusion is that increasing tY, Pv/Pw or 

c1/Pw increases the probability of direct lines having larger vehicles than corridor lines. 

Finally, when moving from µ   to μ = 0 it is evident that operators cost increases and that 

users costs must decrease by a larger amount. Behind this, of course, lies the variation of fleet 

and vehicle size. Numerical simulation with data from Santiago, Chile, replicates what was 

shown in Figure 1 for the one-line case: optimal fleet more than double the operators’ cost 

minimizing fleet and optimal vehicle size is less than half. 

Table 1 summarizes the design variables and level of service for both extreme cases of the 

financial constraint.  
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Table 1: Summary of results 

Financial Constraint 

Multiplier 

Equivalent 

objective
 Best structure Fleet size Vehicle size 

Average 

waiting 

time 

Average 

in-vehicle 

time 

µ=0
 

Min CU + CO 

The probability of 

direct increases with 

tY, Pv/Pw or c1/Pw 

Lower for 

best 

structure 

The probability of 

KD> KC increases with 

tY, Pv/Pw or c1/Pw 
Lower for 

corridors 

Lower for 

direct  

µ  
 

Min CO Direct 
Lower for 

direct 
Larger for direct 

 

As said earlier, the analysis of a stringent financial constraint on the design of a public 

transport system was used by Jara-Díaz and Gschwender (2009) to explain the fleet reduction 

and vehicle size increase that was part of the complete redesign of the bus system in Santiago, 

Chile, with dramatic consequences for the users. Looking at the bottom row of columns 3, 4 

and 5 in Table 1, it seems that in Santiago only fleet and vehicle sizes had been impacted by 

the self-financial constraint, namely, smaller and larger than optimal fleet and vehicle size 

respectively. Regarding the third element, whose analysis was the aim of this research, the 

pre-existing direct lines structure was changed towards a mix of feeder and corridor trunk 

lines. According to our results, minimizing operators costs only should have resulted into a 

system of direct trunk lines; however, corridors were preferred. This cannot be explained in 

terms of a financial constraint that was not stringent enough, because minimizing total cost 

for a system with large bus patronage as in Santiago would also yield a direct trunk lines 

system. We believe that this was due to an important difference between the design process 

behind fleet and vehicle sizes - which are the result of large scale optimization problems - and 

the design of a lines structure, which is mostly based on heuristics and intuition. Moreover, 

the strategic model used to design the public transport routes, frequencies and vehicle sizes 

was not sensitive to the effect of boarding and alighting times on cycle times (that extends to 

fleet and, eventually, to costs). Nevertheless, it is quite interesting to note that after the 

evident initial difficulties, the transit system in Santiago is changing in the three design 

dimensions analyzed here in the direction suggested by our results: fleet size has increased by 
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some 30% with smaller than average vehicles, and some services have been either extended or 

complementarily merged, increasing direct connectivity and inducing some overlapping.  

 

5. CONCLUSIONS 

By extending the single line model (Jara-Díaz and Gschwender, 2009) to a representative 

network, we have shown that a financial constraint does not only affect transit design in terms 

of frequency and vehicle sizes, but also in terms of the spatial structure of lines. If no 

financial constraint exists, the optimal structure - corridor or direct lines - will depend on the 

level of demand Y and on the values of some key parameters: values of time and the marginal 

cost of providing vehicle capacity. But a stringent financial constraint - which is shown to 

reduce the importance of users’ costs - changes the unconstrained result because what 

happens to matter is the reduction of the fleet that can be induced by diminishing cycle time 

through the elimination of transfers, making direct lines with a smaller fleet of larger buses 

always the best (sub-optimal) option.  

The network analyzed includes one central and several peripheral nodes. When users’ and 

operators’ cost is minimized, we have shown that it becomes more likely that direct lines are 

the most convenient as demand increases or the relative value of waiting time decreases 

(everything else constant); this happens mainly because, in spite of the mandatory transfers, 

waiting times are lower in the corridors as a result of higher frequencies. When only 

operators’ cost is minimized, direct lines are always more convenient because they avoid 

transfers, diminishing boarding and alighting time, thus reducing cycle times and fleet size 

which, finally, reduces operators’ cost. Nevertheless, when demands are low, each direct line 

(specialized in one OD pair) may result in low frequencies yielding large waiting times. This 

is the reason why the inclusion of users’ cost (time) in the optimization changes the optimal 

structure towards corridor lines for low levels of demand. It was found that for both extreme 
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cases of the financial constraint, corridor lines yield always lower total waiting times and 

larger in-vehicle times than the direct lines, but the waiting time effect dominates. The fact 

that total in-vehicle time is larger in corridors than in direct lines is explained by the transfers, 

which imply higher in-vehicle times for some passengers. 

In summary, for a system with given technical characteristics direct lines are the best structure 

for the operators for all demand levels
5
. Interestingly, direct lines are also the optimal 

structure for users and operators when demand is sufficiently high
6
. However, the fleet size is 

lower in the first case (with larger vehicles) negatively affecting users through the waiting 

time. It is worth noting that the optimal structure is influenced by the term tY, i.e. demand acts 

through the boarding and alighting time of passengers. Therefore, the demand effect is 

reduced when boarding and alighting is made easier for large groups of passengers, for 

example using several doors simultaneously (as in metro systems), favoring the corridors 

structure. On the other hand, if a transfer penalty and/or transfer walking time were 

considered, the probability of direct lines being the best ones would increase. Nevertheless, no 

relevant change in the qualitative results would occur. 

Note that the network model presented here was built to analyze the choice between direct 

and corridor services for the main lines in an urban setting, the so-called trunk lines. To be 

able to analyze the convenience of a feeder-trunk system as a whole, our approach could be 

extended to consider unbalanced demands and shorter services in the extreme points of the 

network. It would be interesting as well to include crowding, expressed as the ratio between 

load size k and vehicle size K, which would affect waiting time through the probability of not 

being able to board a vehicle and could be used to capture discomfort making the in-vehicle 

                                                
5 This coincides with the result obtained by Jara-Díaz and Basso (2003) for their simplest case (equal distances, 

equal flows) in a three nodes network. 
6
 This resembles the results obtained in the air transport literature for a socially optimal service structure that 

depends on demand (Brueckner, 2004), if one associates hub and spoke with corridors (both have transfers) and 

fully connected with direct lines (no transfers). 
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time value an increasing function of that ratio. This could yield an optimal vehicle size larger 

than the maximum load, as obtained by Jara-Díaz and Gschwender (2003a) for a single line 

model. 
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Appendix 1: Numerical comparison of total cost from equation (19) 

Table A1.1: Values of the parameters used in the numerical evaluation*  

Parameter Value Units 

c0
 

10.65 US$/hr 

c1
 

0.203 US$/hr 

t 2.5 Sec 

T0
 

2,72 Hr 

Pw 4.44 US$/hr 

Pv
 

1.48 US$/hr 

 0.5  
* Bus costs parameters calculated from SECTRA (2004). Pv taken from MIDEPLAN (2007); Pw set to three times Pv. 

 

Table A1.2: Numerical comparison of total cost without and with approximation 
Y (pax/hr) 4,000 6,536 7,439 10,000 

Total Cost (US$/hr)    

(A) Direct 18,465.8 29,474.9 33,379.5 44,430.3 

(B) Corridor 18,400.7 29,474.9 33,407.0 44,543.0 

(A)-(B) 65.1 0.0 -27.5 -112.7 

First term    

(C) Direct 59.2 96.7 110.0 147.9 

(D) Corridor 74.0 120.8 137.5 184.9 

Second term   

(E) Direct 3,016.8 4,231.4 4,648.4 5,807.9 

(F) Corridor 2,937.0 4,207.2 4,648.4 5,883.7 

(E)-(F) 79.8 24.2 0.0 -75.8 

 

Total cost is equal for direct and corridor structures for Y = 6,536 passengers per hour. The 

third term of eq. (19) is equal for both structures so it cancels out. The first term is never 

larger than 3.1% of the second term for both structures. When only this latter is used, the 

difference in cost becomes nil for Y = 7,439 pax/hr, 13.8% larger than the exact value. 

 

Appendix 2. Optimal waiting and in-vehicle times. 

Replacing optimal frequency from equation (15) into the expressions for the waiting time (10) 

and in-vehicle time (14) yields  
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The waiting times for each structure are obtained replacing (N, τ) by (2, 1/4) for corridors and 

(4, 0) for direct lines. This yield that total waiting time for corridors is lower than for direct 

lines when 

 
1 175 28.125 150 135 47.25 180w w

v v

P P
tc tP tc tP

Y Y

 
      (A2.3) 

which is always true. Analogously, in-vehicle time for corridors is larger than for direct lines 

when (A2.4) is valid, which is always true. 
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v v

P P
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      (A2.4) 

 

Appendix 3: Differences in total cost components as a function of Y. 

Y (pax/hr) 1,000 4,000 6,536 10,000 

Operators’ cost (US$/hr) 

    (A) Direct  1,518.6 5,010.5 7,873.1 11,756.2 

(B) Corridors 1,484.8 5,022.3 7,948.8 11,929. 7 

(A)-(B) 33.8 -11.8 -75.7 -173.5 

Waiting time cost (US$/hr) 

    (A) Direct  587.3 1,023.2 1,192.0 1,328.7 

(B) Corridors 524.4 875.9 999. 0 1,093.0 

(A)-(B) 62.9 147.3 193.0 235.7 

In-vehicle time cost (US$/hr) 

    (A) Direct  3,070.2 12,432.1 20,409.8 31,345. 4 

(B) Corridors 3,082.9 12,502.6 20,527.1 31,520.3 

(A)-(B) -12.7 -70.5 -117.3 -174.9 

 


