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ABSTRACT 

This paper reports results of uncertainty analysis of the Albatross model system. More 

specifically, the effects of model uncertainty on destination totals and traffic volumes, 

predicted by Albatross are investigated, using the city of Rotterdam as an example. The 

study involves 1000 runs of model system for a synthetic population of 41,668 individuals. 

Results indicate that the average uncertainty in the predicted OD matrices due to model 

uncertainty is 45 per cent, and 0.13 per cent for destination totals based on these simulation 

runs. In general, uncertainty is lower for the destinations with higher traffic volumes.  

Uncertainty in predicted traffic volumes, represented by the cells of the OD matrix, tends to 

be higher. Finally, for both types of indicators, there is evidence of spatial variability in 

coefficients of variation (CV), capturing respectively uncertainty in destination totals and 

traffic volumes. Generally, uncertainty is a non-linear function of the number of samples. 
 

Keywords: Model uncertainty, Activity-based model, Trip frequency, Coefficient of variation 

INTRODUCTION 

Research on model uncertainty of activity-based models of travel demand is still in its 

infancy. Little is known about the effects of simulation error on the forecasts of these models. 

Investigating uncertainty in forecasts of travel demand model is of the utmost importance to 

differentiate policy effects from simulation error and better understand the probabilistic nature 

of travel demand forecasts. In addition, knowing uncertainty associated with a model’s 

forecasts allows improving the model and make better operational decisions in model 
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applications. 

 Most previous research has been concerned with the traditional four-step model of 

travel demand and tour-based models (Rasouli and Timmermans, 2012). Examples include 

Rodier and Johnston (2002), Zhao and Kockelman (2001), De Jong et al. (2007), Walker 

(2005) and Yang and Chen (2010, 2011). For example, Zhao and Kockelman (2001), 

investigating input uncertainty and error propagation of a conventional four-step model for an 

818-link network covering 25 zones in the Dallas-Fort Worth metropolitan region, found that 

the coefficients of variation of two link flows were larger than the 0.3 for combination of model 

and input uncertainty. They analyzed input uncertainty by varying the coefficients of variation 

for the number of households and different employment types from 0.1, via 0.3 to 0.5 and 

model uncertainty by considering CV of model parameters as 0.30 and later varied to 0.1 and 

0.50, assuming multivariate normally distributions and a correlation of + 0.3 across all 

variables. The four-step model was run 100 times with different input values, drawn from 

these distributions. Similarly, De Jong et al. (2007) conducted an uncertainty analysis of the 

Dutch national and regional travel demand model used the standard deviations and 

correlations of 20-year moving averages of some input data to extract values from a 

multivariate normal distribution. They ran the model 100 times, 50 times for a reference 

scenario and 50 for a new infrastructure project. For each of these 50 runs, 20 were made for 

varying input variables, 20 with varying model coefficients and 10 in which input variables 

were combined with model coefficients. Uncertainty of the LMS (the National Model System) 

forecasts was assessed at the level of aggregate travel indices (such as number of tours and 

passenger kilometers by mode and purpose) and the link level (traffic flows in passenger car 

equivalents, travel times and vehicle hours lost on a number of selected links). They found 

input uncertainty to be higher than model uncertainty. Standard deviations of the link flows 

were between 4% and 9% for input uncertainty, and around 1% for model uncertainty. The 

most elaborate study to date was conducted by Yang and Chen (2010, 2011). They 

investigated uncertainty and error propagation in Oppenheim’s combined travel demand 

model (Oppenheim, 1995). Both input and model uncertainty in model forecasts, considering 

travel demand, traffic flows, and travel costs as output variables, was assessed for the Sioux 

Falls network, consisting of 24 nodes and 76 links, reduced to two modes (car and transit). 

Inputs were assumed independently and normally distributed, with a coefficient of variation of 

0.3. Results indicated that the CV of travel demand and traffic flows was almost identical to 

input uncertainty. The coefficient of variation of total travel time and total vehicle miles are 

lower than the coefficient of variation of inputs. Contrary to De Jong et al. They found the 

effects of model uncertainty higher.  

 Research on rule-based travel demand forecasting models is even more limited. It 

has been primarily concerned with uncertainty of aggregate travel indicators such as daily 

total travel distance and daily time use (e.g., Cools et al., 2011; Rasouli et al., 2011, 2012a, 

2012b). Cools et al. (2011) examined uncertainty of the FEATHERS model, the Flemish 

version of the Albatross model. They ran the model 200 times for the same 10% fraction of 

the synthetic population. Uncertainty, measured in terms of the coefficient of variation, was 

assessed for the average daily number of trips per person and the average daily distance 

travelled per person, both for the entire sample and for segments, defined by mode choice, 

age and gender. Calculated coefficients of variation based on the 200 runs were compared 

against a 1.27% threshold error rate, which corresponds to the corresponding 95% 

confidence bounds of a 5% deviation. Results showed that this threshold value was often 
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exceeded for public transport. Overall, the effects of model uncertainty on aggregate travel 

indices were small: 0.12 for the daily number of trips and 0.20 for daily distance travelled per 

person. Rasouli et al. (2011, 2012a, 2012b) found uncertainty in number of trips is higher 

than uncertainty in distance travelled in an application of the Albatross system to the 

Rotterdam area. Thus, compared to the already limited research on uncertainty analysis on 

four-step and tour-based models of travel demand, knowledge about uncertainty in rule-

based models of travel demand is very limited. Yet, the study of model uncertainty in rule-

based models is of particular interest because different constraints and non-linearity in 

responses may affect predicted choices in distinct ways. 

  To contribute to this limited line of research, this paper reports the effects of model 

uncertainty on predicted destination totals and traffic volumes by the Albatross model system 

(Arentze and Timmermans, 2000, 2004, 2005). Albatross is a rule-based model. It consists of 

27 decision tables that are activated according to some sequence, which reflects an 

assumed priority ordering in the scheduling of activities and travel. Each decision table uses 

a set of socio-demographic characteristics of travellers and the state of the environment as 

input. Moreover, the outcomes of previous scheduling decisions are used as input in 

subsequent decision trees, representing the next scheduling decisions. Albatross also 

incorporates the decisions of other household members to model task allocation, joint activity 

participation and resource allocation decisions. 
 

 

Figure 1: Population distribution across zones in Rotterdam 
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DATA AND METHODOLOGY 

The Rotterdam study area 

The uncertainty analysis of the Albatross model system was conducted for the city of 

Rotterdam, the second largest city in the Netherlands with a population of approximately 

600,000 inhabitants in 2005. Rotterdam is a harbour city, which was destroyed during WW II. 

Consequently, it is a modern city, with a city centre, more or less in the middle of the city. 

Major highways runs North-South and from the East to the harbour. Figure 1 depicts 

household population distribution across zones in Rotterdam. 

The synthetic population 

Because Albatross simulates activity-travel patterns of individuals and households as a 

function of their socio-economic profile, individual and corresponding household profiles are 

required for every individual and household in the Rotterdam study area. Such population 

data are, however, not available. The only information that is available concerns marginal 

distributions of socio-economic variables for Rotterdam. As a solution to this problem, a 

synthetic population is created. It is based on the notion to derive individual and household 

profiles such that (i) aggregations of the derived data are consistent with available 

distributions for the city and (ii) the correlations in the derived profiles are consistent with 

those observed in sample data. In the present case, the correlations observed in the National 

Travel Survey for similar cities were used to accomplish the latter requirement. 

 In the literature, several algorithms have been suggested to create a synthetic 

population. For example, Beckman et al. (1996) suggested using the technique of iterative 

proportional fitting using PUMS data. Other recent examples include Guo and Bhat (2007), 

Auld and Mohammadian (2010), Mohammadian et al., (2010) and Abraham et al. (2012). As 

evidenced by these examples, the specific approach often depends on the available data, 

although the algorithms have more general meaning. In the present study, the synthetic 

population was created as follows. Attributes of households/individuals that are included are 

household type (single non-worker, single worker, double non-workers, double one-worker, 

double two workers), age of oldest member of household (younger than 25 years, 25 – 44, 

45 – 64, 65 or older), age of youngest child (no children, younger than 6 years, 6 – 11 years, 

12 or older), socio-economic class (very low household income, low, average, high income), 

number of bikes in household, number of cars in household, gender of person, driver’s 

license, car availability, bike availability  and number of weekly working hours of person. The 

data used to create a synthetic population are based on the Dutch National Travel Survey 

and a division of the Netherlands into a 1308 zones. Iterative proportional fitting was used to 

synthesize individual data. The concept of a relation matrix was used to convert individual 

count data to household count data for age groups and work status. More specifically, an 

age-group relation matrix specifies the relation between our age groups and three household 

status positions for females and males. Again, the IPF technique is used to derive estimated 

cell frequencies, based on the National Travel Survey sample data and marginal constraints, 

derived from demographic data. The frequencies of a similar work-status relation matrix were 

obtained in a similar vein. This matrix distinguishes no work, part-time work and full-time 

work, which are linked to the household status categories.  It results in a distribution of 15 
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household types comprising 3 × 3 double work status groups, 3 single female work status 

groups and 3 single male work status groups  (Arentze et al., 2007). 

Model predictions 

The actual uncertainty analysis involved the following procedure. First, a random sample was 

drawn from the synthetic population. More specifically, a 10% fraction of the synthetic 

population, consisting of 41,668 persons and 27,961 households, was randomly selected. To 

rule out the possibility that results are influenced by the sampled fraction, it was kept 

constant for all analyses in the present study. Next, for each sampled individual of this 

fraction, the Albatross model was run 1000 times. In each run, the 27 decision trees making 

up the Albatross model system were activated according to the sequence underlying the 

assumed process model. The simulated realizations of previous decision tables were used 

as input for the next decision tables. Choices were simulated by Monte Carlo draws from the 

probabilistic action tables. These runs thus result in different individual-level simulated 

activity-travel patterns. Running the model multiple times allows one to analyse the effects of 

the number of runs on the uncertainty of a set of performance indicators and travel indices. In 

this study, the focus is on predicted OD matrices, which were derived by aggregating 

predicted individual space-time trajectories into origin-destination tables.  

The coefficient of variation (CV) was used as a measure of uncertainty. If x is 

a normal random variable with mean µ  and variance σ 2 , then the parameter  

µ

σ
κ ≡

           (1) 

is called the population coefficient of variation. A point estimate of (1) is given by 

 x

s
K ≡

           (2) 

where x   and s   are respectively the mean and standard deviation of the sample. 
  

RESULTS 

The study area was divided into 66 postal areas. Thus, uncertainty at the cell level of the OD 

matrix, depicting the number of trips between an origin and a destination can be calculated 

for 66 x 66=4357 cells. In addition, uncertainty can be calculated for 66 destination totals. 

Uncertainty estimates at the cell level are relevant for transportation planning in the sense 

that these cells of the OD matrix constitute input for traffic assignment and are thus influential 

to simulated traffic flows on the network. Uncertainty estimates at the level of destination 

totals are more relevant to urban planning applications. These destination totals are often 

used to assess the feasibility of new plan proposals. For example, if the destination total 

relates to shopping, this indicator represents the number of predicted people to shop in a 

certain postcode area. This number when combined with expenditure data can be used to 

assess floor productivity of retail space in that zone (e.g. Rasouli and Timmermans, 2013).  
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Figure 2 - Distribution of coefficient of variation for traffic volume on OD pairs  
 
 

 
Figure 3 - Relation between average traffic volume and CV 
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Figure 4- Distribution of coefficient of variation for destination totals 
 

Figure 2 represents the CV distribution over all OD pairs. The average and standard 

deviation of CV are 0.45 and 0.25. Because as one might expect that model uncertainty is 

related to the number of trips, which varies across the study area, in addition to the 

aggregate results, the spatial distribution of the coefficient of variation was investigated. To 

that end, the calculated CV for all pairs in the OD matrix were graphed against the total 

number of trips observed for that pair. The result is visualised in Figure 3. Note that 

considering the population fraction of 10 per cent in this analysis, some OD pairs have very 

low predicted trip frequencies (the average less than 1 trip in some cases). Therefore, 

variation is relatively high as one might expect. 15 per cent of PCA pairs had very low 

predicted trip frequencies and were therefore removed from the data. 

Uncertainty in destination totals 

The predicted number of trips between origins and destinations can be summed across 

origins to derive for each destination the total number of trips arriving in that destination. As  

discussed, this statistic is often crucial for assessing the spatially varying impact of plans. For 

each of the 1000 runs, the predicted origin-destination tables were aggregated to arrive at 

destination totals for each run. Next, the coefficient of variations and their standard 

deviations were calculated for each destination. Table 1 provides an overview of the resulting 

CV. Figure 4 depicts the distribution of CV for destination totals. The table and figure show 

that the coefficient of variation varies between 0.09 and 0.19 with the exception of PCA 3059 

with a CV of 0.62. The highest number of destinations falls in the 0.09 - 0.13 category.  
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As expected, these findings indicate that uncertainty of model forecasts, due to the 

inherent stochastic nature of the Albatross model system, is lower for destination totals, 

compared to traffic volumes. This finding is the immediate result of the larger number of 

observations for the destination totals. To explore spatial effects, Figure 5 maps the results of 

the coefficient of variation for the destination totals for the various destinations. The map 

clearly shows that most destinations (55 out of the 66 postal code areas) have a CV of less 

than 0.15. Since the CV was calculated based on the traffic of Rotterdam, some PCA’s which 

are located at the border of the study area tend to have higher coefficients of variation due to 

the fact that a large portion of traffic of these areas is generated from outside of Rotterdam. 

IMPICATIONS FOR RESEARCH/POLICY 

This paper has reported the main results of an analysis of model uncertainty of the Albatross 

model system for a synthetic population of the Rotterdam analysis. It contributes to the 

increasing interest in examining uncertainty in model forecasts of models of travel demand.  

Policy makers have realised that uncertainty in model forecasts in some cases may 

be as relevant as predicted averages. Moreover, the increasing complexity of models of 

travel demand and the inherent stochastic nature of the latest generation of discrete choice 

and activity-based models have made researchers realize that formal uncertainty analysis is 

required to differentiate policy effects from inherent probabilistic forecasts of these models. 

While uncertain analysis has been applied to four-step and discrete choice models, 

its application to an activity-based model is a relatively novel feature of this research. 

Relatively few prior studies have been concerned with activity-based models. The number of 

studies on rule-based model systems in transportation research is even smaller. Moreover, 

the very limited empirical evidence obtained thus far has been concerned with aggregate 

travel indices. Thus, this study is to the best of our knowledge, the first study examining the 

effects of model uncertainty of a rule-based model system of travel demand on predicted 

destination totals and traffic volumes. 

The findings of this study indicate that the average uncertainty in the predicted OD 

matrices due to model uncertainty is 45 per cent, and 13 per cent for destination totals, 

based on 1000 simulation runs. In general, this uncertainty is lower for the destinations with 

higher traffic volumes and higher for less frequently visited zones. In that sense, clear spatial 

effects could be discerned. Uncertainty in predicted traffic volumes, represented by the cells 

of the OD matrix, tends to be higher 

The implications of these findings for transportation policy are manifold. First, the 

importance of conducting a formal uncertainty analysis is evidenced by the results of this 

study. The substantial size of the coefficient of variation under particular conditions suggests 

that a single run may deviate substantially from the average prediction. Second, results 

indicate that a small number of simulation runs may not be sufficient for assessing 

uncertainty in OD matrices. It implies that either an even larger number of model runs would 

be required, or that the sample for the concerned cells of the OD matrix or the concerned 

destinations, should be increased or a combination of these strategies would be required. 

Third, transportation policy should develop and explore approaches of how to include this 

uncertainty in policy evaluations. 

The results also point at interesting avenues of future research. It will be evident that the 

approach reported in this paper, which involved 1000 model runs is very time and resource  
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Table 1 - Coefficient of variation for uncertainty in destination totals 

Dest Average Std CV Dest Average Std CV Dest Average Std CV 

3011 2356.17 301.37 0.128 3038 1206.10 150.21 0.125 3067 2889.40 443.02 0.153 

3012 1944.02 252.72 0.130 3039 1712.53 213.62 0.125 3068 3033.39 307.71 0.101 

3013 647.51 62.044 0.096 3041 106.45 19.81 0.186 3069 2353.54 301.87 0.128 

3014 1282.04 146.34 0.114 3042 1228.24 142.96 0.116 3071 2634.43 306.72 0.116 

3015 1195.59 109.17 0.091 3043 853.01 87.39 0.102 3072 2004.59 230.21 0.115 

3016 545.63 59.805 0.110 3044 439.10 28.99 0.066 3073 2003.09 250.82 0.125 

3021 1855.14 233.59 0.126 3045 298.76 51.33 0.172 3074 1827.00 260.64 0.143 

3022 1383.96 153.70 0.111 3046 61.86 12.21 0.197 3075 1862.07 242.45 0.130 

3023 1251.46 153.09 0.122 3047 126.49 16.39 0.130 3076 2170.06 260.68 0.120 

3024 1161.09 110.84 0.095 3051 1232.96 121.03 0.098 3077 2052.95 233.99 0.114 

3025 1005.80 144.21 0.143 3052 892.55 91.00 0.102 3078 1888.11 333.35 0.177 

3026 1009.80 122.28 0.121 3053 1256.25 152.63 0.122 3079 2219.38 277.62 0.125 

3027 1309.63 142.64 0.109 3054 1142.64 143.49 0.126 3081 1656.58 209.59 0.127 

3028 1086.19 144.77 0.133 3055 983.39 118.14 0.120 3082 1612.72 209.97 0.130 

3029 744.29 70.785 0.095 3056 176.88 27.47 0.155 3083 2433.26 438.97 0.180 

3031 1375.10 174.39 0.127 3059 3.21 2.01 0.625 3084 505.62 68.48 0.135 

3032 1126.14 122.68 0.109 3061 2347.42 347.02 0.148 3085 1823.84 275.76 0.151 

3033 788.23 90.43 0.115 3062 1407.29 155.79 0.111 3086 1692.57 257.30 0.15 

3034 1975.46 231.90 0.117 3063 1717.91 157.32 0.092 3087 378.73 46.49 0.123 

3035 1155.84 160.42 0.139 3064 249.84 27.97 0.112 3088 244.64 20.72 0.085 

3036 1350.46 176.13 0.130 3065 974.82 113.69 0.117 3089 525.48 49.30 0.094 

3037 1211.39 187.20 0.155 3066 1559.39 173.63 0.111 9999 16572.01 975.10 0.059 

 

demanding. If, as the results suggest, more runs are needed, the approach may be too 

demanding. Hence, it is interesting and relevant in future research to find ways to reduce this 

computational burden. Technological solutions such as cloud and parallel computing can be 

explored, but research into clever sampling methods should be stimulated.  
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Figure 5 - Spatial distribution of coefficient of variation 
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