
1 

 

Distribution of Urban Walking Trips and the Effects of 

Restricting Free Pedestrian Movement on Walking Distance 
 

 

Alejandro Tirachini   

Institute of Transport and Logistics Studies (ITLS) 

The University of Sydney  

NSW 2006 Australia 

Tel: +61 2 9351 0169 

Fax: +61 2 9351 0088 

alejandro.tirachini@sydney.edu.au  

 

 

 

 

ABSTRACT 

 

When traffic becomes intense in an urban area and wider spaces are provided to ease the 

movement of motorized vehicles, a set of external impacts take place, such as social 

severance, delays and excessive walking distances for pedestrians, increased risk of 

accidents, noise and so on. These factors affect the environment, the people living nearby, 

and also make pedestrians and cyclists more vulnerable against motorized vehicles. This 

paper presents an analytic framework to measure the spatial segregation caused by reducing 

or forbidding the free movement of pedestrians, due to the existence of a highway or other 

type of transport facility with barriers that prevent pedestrians from crossing. Probabilities of 

walking and expected walking distances are calculated under two different road 

configurations–free and limited pedestrian mobility. The model is applied in Santiago, Chile, 

on a road where a normal avenue was replaced by a highway segregated with barriers, only 

with pedestrian overpasses in specific locations to allow crossing. Results show that the latter 

situation decreases the probability of walking to places where the walking distance is 

increased, worsening car dependency even for short trips. The greatest inconvenience is for 

people living directly adjacent to the highway, whose walking distance to cross the road is 

tripled on average.   
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1. INTRODUCTION 

 

Walking is healthy, free, enjoyable and has no noticeable external costs, typical of motorised 

transport such as congestion, air pollution, noise, energy consumption and so on. The layout 

of cities, neighbourhoods and suburbs influences the greater or lesser predisposition to walk; 

a quiet, safe and comfortable environment for walking is reflected in communities with a 

major social cohesion, economic development, accessibility to services and work places, and 

reinforces equity as one of the objectives of the transport system. Nevertheless, walking, 

cycling and other non-motorised means of transport often play a secondary role in the 

investment decision process, even considered less attractive or contrary to an image of 

progress and modernity (Peng, 2005), and have been undervalued in the social assessment of 

transport projects (Litman, 2003). Thus, it is common that in many cities, transport 

authorities are inclined to encourage the construction of traffic facilities and roads for 

motorised transport, oftentimes making the movement of pedestrians and cyclists more 

difficult. On the contrary, investing in projects that encourage the use of non-motorised 

modes has benefits that largely exceed the costs. For instance, Sælensminde (2004) analyses 

investments in walking and cycling track networks in three cities in Norway, estimating that 

the benefits of such facilities are between 3 and 14 times the cost, becoming more beneficial 

for society than any other intervention on the transport system.   

 

Narrow streets and/or roads with little traffic are essential for a pedestrian-friendly 

neighbourhood, where residents and visitors are able to walk easily. On the other hand, wide 

avenues, highways or severely congested streets may result in a problem for pedestrians if 

crossing them is difficult, slow or dangerous, inhibiting the disposition to walk and becoming 

a barrier that separates the city and threatens against social integration and cohesion, a 

phenomenon referred to as barrier effect, barrier cost and severance (Russell and Hine, 

1996; TRB, 2001; Litman, 2003; Handy, 2003; Bradbury et al., 2007 among others). 

Community severance as a transport externality has three dimensions (DfT, 2005a): Physical 

barriers, as in the introduction of new road infrastructure that produces excessive walking 

times and distances, or the existence of pedestrian crossings which are inaccessible for people 

with limited physical mobility; psychological barriers such as traffic noise and fear of 

accidents due to insufficient facilities for pedestrians; and social impacts, like the disruption 

of a quiet lifestyle and social interaction between neighbours. These barriers (physical or 

sensory), besides affecting negatively the quality of life in the basic necessity that is walking, 

have impacts on the local economy, as a result of the loss of accessibility to places typical of 

a human-scale city, such as local shops and markets, usually reached by walking. The 

pedestrian access to work places, hospitals, schools, bus stops and public transport stations is 

also worsened. These effects accumulate and persist over time and affect some social groups 

to a greater degree, as the most affected are those without access to a car, children, seniors 

and handicapped persons (DfT, 2005a).  
   
The exclusion of barrier costs and severance in the social appraisal of transport infrastructure 

projects results in an overestimation of benefits. However, its inclusion is complicated due to 

the multiple dimensions affected and the subjective character of some of the effects (for 

instance, loss of social contact among neighbours), which makes the valuation or 

measurement of such costs highly complex (Litman, 2003; Handy, 2003; DfT, 2005b). This 

is the main reason to disregard or barrier effects in transport planning practice (Russell and 

Hine, 1996). Nevertheless, some countries take into account these variables in the social 

evaluation of projects, even with quantitative methods as in Sweden and Denmark, that 
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estimate the additional delay and risk for pedestrians to cross a road, using functions based 

upon variables such as the traffic flow, the speed and the number of heavy goods vehicles 

(DfT, 2005b). However, as these monetisation approaches are considered as simplifications 

of a phenomenon much more complex, in general they have been replaced by qualitative 

analysis, such as the judgment of specialists and experts. 

 

This paper is concerned with physical barriers (e.g. fences) and analyses the impact of 

preventing pedestrians from crossing a road in any place, forcing them to use only predefined 

locations (crosswalks in streets or avenues, pedestrian bridges and overpasses on highways 

and expressways). The extra travel distance imposed by physical barriers can be a significant 

impediment to walk (Handy, 2003). In this paper, we analytically estimate the decrease in 

probability of crossing the carriageway by walking, and the expected increase in walking 

distance. To do so, we apply geometric probability to the analysis of pedestrian movement. In 

general, geometric probability is defined as the study of the probabilities involved in 

geometric problems
1
. In urban environments, geometric probability is used to analyse the 

relations between objects distributed probabilistically over an area, particularly, to estimate 

travel times and distances given assumptions on the shape of the areas under study 

(rectangular, triangular, circular, general) and the distribution of objects over the plane. 

Examples of problems that can be addressed with geometric probability are finding the 

optimal location of taxi stations given the distribution of pickup calls, the design of a 

response district for ambulances given the distribution of medical assistance requirements, 

and several others as shown in Larson and Odoni (1981). Other works estimate average 

distances between points under different assumptions about the area where the objects are 

distributed (e.g., Vaughan, 1984; Koshizuka and Kurita, 1991). None of these studies 

analyses the case of pedestrian movements in a city, which is the object of this paper. A 

distinguishing feature of trips on foot is that their probability of walking depends on the trip 

length, which makes standard geometric probability examples found in the literature 

unsuitable to analyse pedestrian movements.  

 

The rest of the paper is organised as follows. In Section 2 the problem and modelling 

assumptions are explained, whereas in Sections 3 and 4 probabilities of walking trips and the 

expected length of these are calculated in a given area, for two different road configurations 

representing free and limited pedestrian mobility. In Section 5 the model is applied to a road 

in Santiago, Chile, where an avenue was replaced by a highway segregated with barriers, 

placing pedestrian overpasses in specific locations to allow crossing. Final comments and 

conclusions are given in Section 6. 

 

 

2. EQUIDISTANCE CURVES  

 

The number of walking trips depends on the distance to be walked and quality of the 

surrounding environment. Relevant factors in making the decision to walk are safety, security 

and comfort. From the Origin Destination Survey of Santiago (SECTRA, 2001), we find that 

the distribution of walking trips as a function of the distance s, can be approximated by an 

exponential random variable (as shown in Figure 1) whose density function is  

 











00

0

sif

sife
sf

s
     (1) 

                                                
1 MathWorld- A Wolfram Web Resource. http://mathworld.wolfram.com/GeometricProbability.html 
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where 1   is the expected value of the random variable s. The value of 1   can be estimated 

with the method of maximum likelihood, whose result is the average walking distance by 

travellers in the sample, approximately 700 meters in Santiago. 
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Figure 1: Observed and predicted probabilities (exponential random variable) for 

walking trips as functions of distance. 

 

In the following, two road configurations are analysed: 

a) Roads in which the pedestrian crossing may be done at any point, because of the 

absence of regulated pedestrian crossings or existence of a scarce traffic flow.  

Examples of these roads are local streets, quiet avenues and walking streets. In the 

following, this type of road will be generically called streets.  

b) Expressways in which there are physical barriers, like fences or walls, which 

segregate the carriageway from the environment to isolate the traffic and prevent 

pedestrian crossing, which is possible only in pedestrian bridges and overpasses 

(Figure 7).  This type of road will be generically called highways.  

 

The urban area to be analysed is assumed flat and composed by parallel and perpendicular 

streets (chess board shape), thus the distance on the plane between two points of coordinates 

 11, yx  and  22 , yx  is 

1212 yyxxd       (2) 

The equidistance curve will be the set of destination points that a person can visit walking a 

distance d from a fixed origin, which is a square of diagonal 2d (Figure 2.a), with d as in 

Equation (2). 
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(a) Street                                                      (b) Highway 

Figure 2: Equidistance curves 

 

In the presence of highways, (2) is not valid for walking trips as the crossing is only allowed 

in specific pedestrian facilities (points 1 and 2 in Figure 2.b), commonly separated for long 

distances (e.g., 500 meters). In this case, the equidistance curve is deformed for walking to 

destinations close to the highway (as point 3 in Figure 2.b). All walking trips are affected if 

crossing a pedestrian bridge, overpass or underpass is required, due to the extra 

inconvenience imposed on pedestrians of going up and down stairs or ramps (see Figure 7). 

The major impact is in journeys that depart from a point like 3 in Figure 2.b and have a 

destination in the area between points 1 and 2, due to the imposition of making the trips either 

through crossings 1 or 2, increasing the walking distance. This area (between 1 and 2, on the 

other side of the road from point 3) will be called vicinity and this type of trip will be called a 

vicinity trip.  

 

It is also assumed that walking trips are made in every direction with the same probability, 

that is, a trip of length d can be made to any point of the equidistance curve with the same 

probability. The validity of this assumption depends on the land use in the studied area: if the 

land use is uniform the assumption is reasonable, but it could be unrealistic if the land use is 

differentiated, for example with areas mostly commercial, residential, industrial, etc. 

 

 

3. PROBABILITY OF MAKING VICINITY TRIPS 

 

The average probability of making vicinity trips is calculated for both types of roads. The 

details in the calculation of formulae (5), (6), (8) and (9) are in the APPENDIX 

 

3.1 Streets (pedestrians crossing anywhere) 

Let L be the distance between two consecutive crossings,  the extra distance with respect to 

the normal width of the road that pedestrians have to walk due to the use of the crossing (for 

example, going up and down stairs or ramps), x the east-west (horizontal) distance between 

the origin of the trip and point 1, y the north-south (vertical) distance from the origin to point 

1, s the trip length and M the maximum walking distance acceptable for pedestrians.  

 

Let us consider a walking trip w of length s. For an exponential random variable, the 

probability 
21 ,ssP  of s to be between s1 and s2 is: 

1 2 

x 

y 

3 
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  
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In addition, due to the directional equiprobability assumption for walking trips, the 

probability of making trip w to the vicinity is the quotient between the area enclosed by the 

equidistance curves s1 and s2 in the vicinity, v

ssA
21 ,  (area with oblique lines in Figure 3) and 

the total area enclosed by s1 and s2, 
T

ssA
21 , . Then, the probability v

ssP
21 ,  for a trip whose length 

is between s1 and s2 to be made to the vicinity is: 

 
T
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v
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Figure 3: Example of area v

ssA
21 , , highway case 

 

With this, the probability ( , )P x y  of a trip, with the origin ( , )x y  on the other side of the 

road, to be made to the vicinity is calculated as
2
: 

       
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   














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xMyxLMifyxByxAyxP
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yxP
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3

2
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 (5) 

where 

    
 

      
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








2
,

224

4
,
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,
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





       (6) 

Therefore, if the same calculation is made  0, 2x L   and  0,y M  , the mean 

probability P of making vicinity trips is obtained by: 

      dxdyyxPdyyxPdyyxP
LM

P

L xLM xM

xLM

M

xM

   










 
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2/

0 0

321 ,,,
2

1
   (7) 

                                                
2 Valid for the case 20 Lx  . The case LxL 2  is analogous.  
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3 

s1 

s2 
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which cannot be solved analytically. In theory, the exponential distribution allows trips to be 

infinitely long, however, as 99.9% of walking trips in Santiago have a length s  5.000 m. 

(SECTRA, 2001), the maximum walking distance assumed is M=5000 m. In other words, 

even though it is possible to have walking trips longer than 5.000 m., the frequency is so low 

that omitting these trips produces negligible errors, but provides an expression for the mean 

probability of making vicinity trips, as in (7). 

 

 

3.2 Highways (pedestrians crossing through overpasses) 

 

In this case, the probability R(x,y) of making vicinity trips is lower due to the contraction of 

the equidistance curves in the vicinity, as can be seen in Figure 2.b (i.e. at an equal value of 

the travelled distance, the displacement is shorter). 
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where 
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Then, in the same way than in (7), the mean probability R is obtained 
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4. EXPECTED LENGTH OF VICINITY TRIPS 

 

Vicinity trips have a minimum length, which is the orthogonal distance from the origin of the 

trip to the road, in the case of streets, and the distance to the closest pedestrian crossing, in 

the case of highways. This minimum distance must be considered in the calculation of the 

expected length of vicinity trips. The expectation value of a continuous random variable s, 

given that its value is restricted to an interval basa   ( 0b ), is calculated as  

 
   

 




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dssfs
aFbaF

basasE
1

   (11) 

where  sf  is the probability density function and  sF  is the cumulative distribution 

function. In the case of a exponential variable,  sf  is given by (1) and  

 

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    (12) 

Therefore, introducing (1) and (12) into (11), 
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an expression that turns out to be
3
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 
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
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     (13) 

 

In order to determine the expected length of vicinity trips, for simplicity, the study area is 

constrained to a rectangular area of sides L and N, where L is the distance between two 

consecutive pedestrian crossings in the case of highways (as shown in Figure 4). A system of 

orthogonal coordinates is defined, whose origin is at the left bottom corner of the rectangle. 

The road (street or highway) is in the ordinate y=n and the vertices of the rectangular area are 

the points  0,0 ,  0,L ,  N,0  and  NL, . Note that n is defined by the relative position of 

the rectangular area to study, with respect to the road.  For example, if 2Nn  , the road is 

in the middle of the rectangle. 

 

 

 

 
 

 
  

 

 

 

 

(a) Street                                               (b) Highway 

Figure 4: Area for the calculation of the expected length of trips 

 

4.1 Streets 

 

For the sake of simplicity, only the expected value of vicinity trips made to the left will be 

determined (by symmetry, trips to the right will have the same expected length), considering 

trips with origin in  11, yx  and destination in  22 , yx , such that 120 xx   (trips to the left 

in Figure 4.a), with 2y  fixed. Using (13), the expectation value of these trips is (replacing x1 

by x) 
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Then, covering all the feasible space, the average value l1 of the expectation is obtained by
4
 

                                                
3 Expression (13) satisfies the following property: 

   bssEabasasE  0  

Result obtained from the “no-memory” property of the exponential distribution:  
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4.2 Highways 

 

In this case, the mean length of vicinity trips made through the left crossing, of coordinates 

 n,0  in Figure 4.b, is calculated (by symmetry, the result is the same for trips made on the 

crossing  nL,  to the right). As in 4.1, we will take into account trips with origin in the point 

 11, yx  and destination in some other point  22 , yx , for a fixed height 2y . The condition for 

these trips to be made at the left crossing is  12 ,0 xLx  , since if 12 xLx  , it is shorter 

walking on  nL,  to the right. Then, the closest point to  11, yx  in this segment is  2,0 y , 

separated by a distance of 112 xyy  , and the farthest one is  21, yxL   by a distance 

of Lyy  12 . Thus, the expected length of trips to this segment is ( 1x  is replaced by x): 
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And the mean value is obtained as in (15), hence
5
: 
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Consequently, using expressions (15) and (16), the extra walking distance imposed by the 

physical barriers can be estimated as 12 ll  , which is independent of the length N assumed 

for the rectangular area under analysis (this is a consequence of the “no-memory” property of 

an exponential random variable, presented in footnote 3). A particular case of (15) and (17) is 

the set of trips from one side of the carriageway to the other (i.e. crossing the road), for 

example, to visit a neighbour that lives on the other side of the road, purchases in a local 

store, etc. In this case, these expressions are still valid, taking N/2=A, where A is the width of 

the carriageway, and fixing the values of 1y  and 2y , such that Ayy  12 . 

 

 

5. APPLICATION 

 

This approach is applied to Vespucio Sur road in Santiago, where a normal avenue was 

replaced by a highway, segregated with barriers to prevent the crossing of pedestrians (Figure 

5). When there was an avenue, it had a moderate traffic flow that allowed the road to be 

crossed at any point (despite that traffic rules forbade it). The length of the analysed route is 7 

km. There are 17 locations where pedestrians may cross (12 pedestrian overpasses and 5 

traffic overpass intersections). In Table 1, the probabilities P and R and the mean trip length 

                                                                                                                                                  

4 Note that the integral  





L

x

x

dx
e

e
x

0 1 



 is correctly defined, since its singularity in x=0 is removable, as  

0
lim 1

1

x

xx

e
x

e











 

5
 Expression (17) is correctly defined as well, since 

1
lim

x L

x Lx L

e x e L
L

e e

 

  

 

 

  
 


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l1 and l2 are shown, for walking trips from one side of the road to the other (A=40 m) and 

inside an area of length N=2000 m, for each of the 16 stretches between pedestrian crossings. 

In addition, the average of these values is calculated, weighted by the length of each segment. 

 

 
(a) View from a pedestrian overpass 

 
(b) Barriers to prevent pedestrian 

crossings 

 
(c) Pedestrian overpass 

Figure 5: Vespucio Sur highway 
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Table 1: Trip lengths and probabilities of vicinity trips 

  Probability A=40 m N=2000 m 

Segment L [m]  [m] P R l1 [m] l2 [m] Difference l1 [m] l2 [m] Difference 

1 410 44 0.8% 0.5% 138 387 181% 1098 1347 23% 

2 820 81 1.6% 0.8% 222 715 222% 1182 1675 42% 

3 730 66 1.4% 0.8% 205 637 211% 1165 1597 37% 

4 450 66 0.9% 0.5% 147 438 199% 1107 1398 26% 

5 130 38 0.2% 0.2% 72 175 142% 1032 1135 10% 

6 160 0 0.3% 0.2% 80 160 100% 1040 1120 8% 

7 360 32 0.7% 0.5% 127 338 167% 1087 1298 19% 

8 350 75 0.7% 0.4% 124 375 201% 1084 1335 23% 

9 780 72 1.5% 0.8% 214 678 216% 1174 1638 39% 

10 390 72 0.8% 0.5% 133 401 201% 1093 1361 24% 

11 200 44 0.4% 0.3% 89 233 161% 1049 1193 14% 

12 540 29 1.1% 0.7% 166 465 180% 1126 1425 27% 

13 220 60 0.4% 0.3% 94 264 181% 1054 1224 16% 

14 420 60 0.8% 0.5% 140 410 193% 1100 1370 25% 

15 330 79 0.6% 0.4% 120 363 204% 1080 1323 23% 

16 200 50 0.4% 0.3% 89 239 168% 1049 1199 14% 

Weighted Average 1.0% 0.6% 158 475 200% 1117 1434 28% 

 

 

Before analysing the results, it is necessary to point out that there are four alternatives for a 

vicinity trip in the case of the avenue, which is longer in the new situation (highway): 

 

a) To change the destination to a place outside the vicinity. This is possible for 

“reassignable” trips, i.e. those whose activity can be done in a closer location given 

the new circumstances (e.g. shopping in a store). Nonetheless, trips to work or study 

can be hardly reassigned, as generally the activity is supposed to be done just in one 

place. Therefore, for this kind of trip, this alternative is not feasible.  

b) To change the mode. This is subject to the availability of other modes to reach the 

destination, particularly, the private car. This is one of the worse externalities of 

building new traffic facilities for cars, if non-motorised transport is not properly 

considered, since the modal split for walking will diminish in the medium run, 

increasing the dependency on motorised transport.  

c) To eliminate the trip. This is only possible for non-compulsory trips, such as leisure. 

It could happen if, for example, under the new circumstances the activity in the 

destination is at an unacceptable distance and there is no closer substitute (e.g., going 

to a park).  

d) To walk anyway, in spite of the disadvantageous situation.  

 

Under the assumption of uniformly distributed destinations, Table 1 reveals that, from the 

total number of trips generated in the study area, whose extension is 2702 kmLM  , 1% 

were made to the vicinity when there was an avenue, which are affected by the highway in 

the new situation.  If these trips were reassignable to a destination outside the vicinity, only 

0.6% will keep having their corresponding vicinity as destination, that is, 40% will migrate 

due to the increase in the walking distances. However, it is possible that less than 40% of 
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trips are reassignable, resulting in Rreal>0.6%. In addition, as it was previously discussed, 

some trips will be suppressed or changed to another mode. The estimation of all possible 

changes in travel behaviour due to the physical barriers imposed by the highway is outside 

the scope of this paper. 

 

The amount of households in the zone is 244,840 and each household makes 5.3 walking 

trips per day in average (SECTRA, 2001). Thus, the number of trips affected in this segment 

of the highway can be estimated as 248,840 5.3 1% 13,189trips trips
household-day dayhousehold    . 

If we consider that the highway has a total length of 23 km, the total number of affected trips 

is around 23 7 13189 43,000trips trips
day day  . Note that there are other trips affected by the 

highway, not taken into account in the estimation, for example walking to bus stops and 

walking trips that cross the highway with destination outside the vicinity (which are affected 

only by the  increase in the walking distance). Therefore, the real number of trips affected 

should be higher than this estimation. 

 

With regard to the length of trips affected by the highway, the results reveal that trips from 

one side of the road to the other (mostly made by people living at the sides of the road), 

increase their length 200% on average, from a mean length of 158 m to 475 m in the study 

area. This is, probably, the most telling figure to illustrate the damage for pedestrians 

mobility imposed by the segregated new infrastructure. On the other hand, for trips inside a 

rectangular area of 2,000 m width, the length is increased by the same amount, as previously 

commented, representing a lower relative increase, which is expected when enlarging the 

impact area farther from the highway.  

 

 

6. CONCLUDING REMARKS 

 

A sustainable management of urban mobility should encourage pedestrian movement, 

bicycles and other non-motorised modes, because of all the benefits that they represent for 

human health (physical and psychological) as well as for cities and urban areas, since they are 

clean, silent, more efficient in the use of road space and consume less energy than motorised 

transport. Using geometric probability, in this paper we formulate and an analytical model to 

estimate some impacts on pedestrians, due to physical barriers such as fences that impede 

free mobility. The effects accounted for are the expected increase in length of walking trips 

and the decrease in probability of walking to areas where that increase in length is greater.  

 

Traffic flow and barriers for pedestrians (physical or sensory) impose highly complex 

consequences on non-motorised transport and surrounding urban life, apart from the simple 

increase in walking distance. This approach provides a quantitative assessment of this impact, 

which can be used together with qualitative techniques to measure other externalities (the 

multiple effects of community severance, fear of accidents, visual intrusion, etc) in the social 

evaluation of transport infrastructure projects, in order to internalise in a more realistic way 

social groups that may be severely affected by the construction of new traffic facilities.  

 

The results of the application on a real case are the expected: when the pedestrian crossing of 

a road is constrained, there is an increase in walking distances and a decrease in the 

probability of walking, relative to the free movement case. The main contribution of this 

approach is the measurement of both effects. The most affected are the residents living 



13 

 

directly adjacent to the road, who suffer closely and more frequently the effects of the 

mobility restriction.   

 

This approach has many other applications. It is suitable to measure the impact on pedestrian 

mobility of other transport facilities, such as segregated busways or railways. It is also useful 

to quantify the benefits of mitigation schemes for the segregated facility, such as new 

crossings or pedestrian bridges, since the decrease in walking length can be measured. On the 

other hand, restrictions on pedestrian mobility also have an impact on other modes, notably 

transit due to a reduction in accessibility to bus stops in local streets, which represents 

another problem for the development of sustainable policies on urban mobility. This 

framework may be used to estimate the increase in walking distance to bus stops.   
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APPENDIX 

On the calculation of probabilities P y R 

 

A1. Calculation of P 

Because of the geometry of the equidistance curves and the vicinity, the shape of area v

ssA
21 ,  

is a function of the trip length s. This is clear in Figure A1a, where there is no v

ssA
21 ,  in Zone I, 

but it is a triangle in Zone II and a polygon in Zones III and IV. This is the reason for 

separating the area in cases for the calculation of P and R. In the case of streets, four zones 

are identified (Figure A1a), whose areas are v

ssA
21 , and T

ssA
21 , , and probabilities 

21 ,ssP and v

ssP
21 , , 

shown in detail in Table 2, in which limits s1 and s2 of each zone are identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                 (b) 

Figure A1: Different areas to calculate probability P 

 

When the origin (x,y) is close to the road, all cases in Table 2 (Figure A1a) may take place, 

however, as the origin is moved away, close to the maximum walking distance ( My  ), only 

some of the previous configurations are possible, as shown in Figure A1b, in which the origin 

is far away from the road and zones I, II and III take place. In all cases, the limit of the last 

zone is given by the equidistance curve d=M, under the assumption of pedestrians walking no 

longer than M. Therefore, taking into account these cases and the results in Table A1, P(x,y) 

turns out to have the form of equations (5) and (6).  

 

A2. Calculation of R 

In the case of highways, the area v

ssA
21 ,  depends on the trip length s as well, but with zones of 

different shapes to those in Figure A1, due to the contraction of equidistance curves for 

vicinity trips (Figure 2). In this case it is also possible to identify four zones, whose 

characteristics are summarized in Table A2.  

 

I 
I II III IV 

d=M 

II III 

d=M 
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Table A1: Calculation of areas and probabilities, street case  

Case Limits v

ssA
21 ,  

T

ssA
21 ,  

21 ,ssP  v

ssP
21 ,  

s1 s2 
I 0 y  0 22y  

ye 1  0 

II y  yx   2x    22
22 yyx   

 yxy ee   
   

 yx

x
ee yxy

22 
  

 

III yx   yxL   22 22 xL      22
22 yxyxL   

   yxLyx ee   
     

  yLxL

xL
ee yxLyx

224

4 22




  

 

IV yxL 

 

M  yxLML    22 22 yxLM   
  MyxL ee       

 yxLM

L
ee MyxL


 

2


 

 

Table A2: Calculation of areas and probabilities, highway case 

Case Limits v

ssA
21 ,  

T

ssA
21 ,  

21 ,ssP  v

ssP
21 ,  

s1 s2 
I 0  yx  0    yxe 1  0 

II  yx   yxL

 
 

2

2
2

xL 
 

   
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 
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



yxL

yx

e

e
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xL
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
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2  
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