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1. INTRODUCTION 

Within the sphere of research associated with 
transportation planning, the problem of 

equilibration - one of solving a set of demand and 
supply (level-of-service) equations - has often been 
left untouched. This was so primarily because of 
the conceptual complexity of the problem and 
secondarily because of the high computational cost 
of implementing an equilibrium model. Thus, in 
many applications of transportation demand stu-
dies, some kind of supply inelasticity (to travel 
volumes) assumptions were made. And in those 
applications where congestion effects were felt 
to be significant enough to be decisive, the In-
cremental Assignment technique was invariably 
used. This technique is computationally quite in-
expensive, but is ad hoc and has problems with 
convergence. 

It is in the last decade or so that we begin to 
see an increased vigor in the development of 
equilibrium models. The seminal paper of Dafer-
mos and Sparrow [1] can be identified as a turning 
point and the start of more mathematical analyses 
of the equilibration problem. For a unified 
approach to equilibration methodologies, viewed 
as solutions to an optimization problem, see, for 
example, the paper by Nguyen [5]. 

The new generation of iterative equilibrium 
models are, unfortunately, still quite expensive to 
use in modeling large transportation systems, and 
because of their highly aggregate nature, are un-
satisfactory from the point of view of behavioral 
theories of travel demand such as that developed 
by McFadden [3], [4]. The object of this paper is 
to suggest a way in which an equilibrium model 
can be developed, whose components are a set of 
supply equations and a set of disaggregate mode-
choice equations. We restrict our attention to the 
analysis of work-trip mode splits over a transpor-
tation corridor. 

In view of the remarkable success of the appli-
cations of Scarf algorithm [6] in computing econo-
mic equilibria (see, for example, Shoven and 
Whalley [8], [9]), we have cast the equilibration 
problem not as an optimization problem, but as a 
problem of computing the fixed point of some 
appropriate mapping. 

Section 2 details the components of the model. 
Section 3 summarizes the key concepts involved 
in the Scarf algorithm, and its application to the 
model developed in section 2. In section 4 we 
indicate briefly our limited experience in applying  

the model to an actual transportation planning 
problem. 

2. A REFORMULATION OF THE 
EQUILIBRATION PROBLEM 

2.1 Segmentation of the Corridor 
Let us begin by reiterating the problem at 

hand. Given the information on home and work 
locations; some socioeconomic characteristics which 
are assumed to completely describe the utility-
maximizing workers; the distribution of tastes 
among these workers; the characteristics of the 
transportation corridor along which home and 
work locations are scattered, predict the equilibrium 
work-trip flow patterns along the corridor. Such 
a result, being an indispensible prerequisite for 
any cost-benefit analysis, hardly requires further 
elaboration as to its importance. 

To reduce the number of "markets" where supply 
and demand have to be equilibrated, we divide the 
corridor into large segments, each of which 
consists of several traffic zones. The segment 
boundaries should be chosen along the most 
natural geographic lines perpendicular to the "axis" 
of the corridor (for example, highway intersections 
might be suitable points through which such 
boundaries pass). Figure 1 gives a schematic re-
presentation of the segmentation of the I-580 
corridor in the San Francisco Bay Area. 

Figure 1 - Schematic Segmentation of the I-580 
Corridor in the San Francisco Bay Area 

2.2 Travel Demand 
Let us assume that each of the workers in our 

system chooses his mode of transportation to and 
from work so as to maximize his utility (minimize 
his discomfort). The individual has a utility func-
tion that can be written in the form 

u(y,t) = v(y,t) + e(y,t) 	 (1) 
where we have assumed that utility depends only 
on travel time t and an index of socioeconomic 
characteristics y. This assumption is artificial and 
is made only for the sake of ease of exposition. 
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Adding monetary cost of travel and other variables 
into equation (1) is straight forward, and will have 
the sole effect of clouding up the structure of the 
problem. v(y,t) can be interpreted as the "re-
presentative" taste of the population, and e(y,t) is 
a stochastic term representing taste variation among 
individuals. As is usually done in empirical work, 
we hypothesize a linear dependence of v on y 
and t: 

v(y,t) = ay + bt 	 (2) 
a and b being coefficients which can be, and have 
been, we assume in this paper, statistically esti-
mated. Under the assumption that the values 
e(y,t) are independently identically distributed with 
a Weibull distribution, McFadden [3] has shown 
that the probability of individual i choosing mode 
m from a common alternative choice set M is 
given by the multinomial logit model 

exp 
i 

	(bt. + ay.) 

m 	exp (bti a ayi) 
/sm 

where I is the total number of individuals in the 
system, and M denotes both the total number of 
modes available to any individual, and the alter-
native choice set which is common to all indivi-
duals in the system. 

2.3 Supply Equations 
Following the convention in transportation 

literature, we distinguish between two types of 
supply relations or relations between travel times 
and volumes over streets and highways: main-
mode supply relations and access/egress supply re-
lations. We derive main-mode supply relations for 
each mode over each segment in the corridor, by 
either extending the single bottleneck formulation 
of May and Keller [2] and Small [10] to a collec-
tion of roads or by an aggregation of individual 
road performance characteristics, a technique which 
utilizes Wardrop's [12] first principle and amounts 
to horizontal (vertical) summation of parallel 
(consecutive) links' "travel time vs. volume" curves. 

To use the technique of May-Keller-Small, we 
need to identify the "bottleneck" for the segment 
as a whole and for each main modes of travel. 
We thus derive a restraining capacity for each 
segment and main mode which "meters" the 
traffic on to the segment. Under the customary 
assumption that the peak period travel volume is 
distributed uniformly over the peak period of 
duration P hours, it has been shown that the 
average travel time (xim) for mode m over segment 
j is given by: 

B. 
max[0, C3m - 1] z +. T 

m 3m 	 3 

M 
B. = 	ym D, 

3m n_1 n 3n 

Bim is a weighted sum of travel demands Din of all 
the M modes in segment j, the weights y n being 
the "equivalence" factors of the modes; Cim is 
restraining capacity of segment j; and Tim is the 
"free-speed" travel time of mode m in segment j. 

As an example, consider the following model 
with three modes: 

m =1: Auto 
m = 2: Express Bus 
m = 3: Local Bus 

Assume that the modes Auto and Express Bus use 
freeways and the mode Local Bus uses arterial 
roads. Then, the travel time for mode 1 over 
freeway segment j is given by: 

1 X. = max[0, 	 - 1] 2+ T 
j1 Cil 
~ 

where 

B71 = yl Di1 + y2 
D.2 + y3 D. 
~ 	33 

and 

yl = 1 
1 

y2 = the number of car-equivalents of an Express Bus 

y3 = 0 

y 3 is zero since Local Bus does not use freeways 
and hence does not affect the travel time on Auto. 
It should be noted that since Express Bus also 
uses freeways, the travel time for Express Bus, 
xi2, is given identically by xii: 31x.=xJ . 

The second alternative, the aggregation of in-
dividual road link supply relations of the segment 
into a segment relation, is a generalization of the 
single bottleneck concept of a segment. More 
realistically, there are more than one bottleneck 
per segment. Each "road", in fact, has a capacity 
beyond which travel time shoots up very fast. 
Thus, we have, for each segment of the corridor, 
a structure consisting of roads with different supply 
relations. For example, a segment might have the 
following structure of roads. 

Figure 2. A Segment Made Up of Four Roads a, b, e, d Each 
Characterized by its Own Time-Volume Curve 

xa, xb, xe, xd 

Under the assumption that conditional on any 
chosen mode, a worker will pick the shortest path 
available, it is easy to see that Wardrop's first 
principle holds. Thus, two parallel roads char-
acterized by two different supply curves x,5, xb is 
equivalent to one road characterized by a supply 
curve x which is a horizontal sum of the supply 
curves xa and xb. Similarly, two roads in sequence 
is equivalent to a single road whose supply curve 
is a vertical sum of the two original curves. Figure 
3 illustrates these cases. 

where 
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Figure 3 - Note that x characterizes road i 

We can apply such simple schemes sequentially 
and reduce even very complex structures into a 
single "road" characterized by a single supply 
relation. In this way, we can derive segment supply 
relations for all segments and modes (the same 
kind of arguments can be used to construct seg-
ment relations for guideway modes). For example, 
denoting the operation in Figure 3 (i) by xa® xb = 
x and that in Figure 3 (ii) by xa QS xb = xe, we 
derive an expression for the segment supply curve 
for the segment shown in Figure 2, in terms of its 
component road supply curves xa, xb, xe, xd, as 
follows: 

0i) Reads iv) StretiCe 

We thus see that in the range of travel volumes 
from zero to Ca, the single "bottleneck" and 
"multiple bottleneck" formulations give identical 
travel times. Beyond Ca the travel times are differ- 
ent, the multiple bottleneck travel time being 
larger than the single bottleneck travel time. Which 
one is correct? The answer is not clear. If the two 
consecutive road links are independent, as in the 
case of a low volume arterial street governed with 
unsynchronized traffic signals, then the multiple 
bottleneck formulation (every signal) is approxima-
tely correct. However, if the consecutive links are 
not independent, as in the case of freeways, then 
the single bottleneck version is approximately 
correct. In real world situations both type of 
cases occur intertwined and it is an empirical 
question which of the two schemes is better. The 
single bottleneck formulation is very attractive 
because of its simplicity and small data require-
ments. Its success will depend in a large measure 
on whether the delays in a segment of a corridor 
are due to congestion or traffic control devices 
(traffic lights, stop signs, etc.) normally found on 
arterial streets. Small [10] has used the point 
bottleneck model to a freeway segment several 
miles long with apparent success. The prevalence 
of signals and stop signs and other disturbances 
on arterials suggest that perhaps a "marriage" 
between the two methods is the best solution .4 

An individual's path from home to work (and 
vice versa) is usually broken down into an access 
component, a main-mode component and an egress 
component. We assume that the access5 part of the 
trip on any mode will always be from home to 
the nearest "main-mode entrance" (highway en-
trance, bus station, and so forth) plus the trip from 
the main-mode exit nearest to the work location 
itself (the trip home from work is dichotomized 
into access and main-mode in a similar fashion). 
This assumption eliminates the need to explicitly 
model each worker's choice probabilities of main-
mode entrances available to him. Checks made on 

x = xa0(xb®xc)©xd 
To contrast the two formulations of segment supply 
functions, consider a segment that consists of two 
roads in sequence with supply curves x5 and xb. 
Now the single-bottleneck approach identifies the 
restraining capacity which, in this case, happens 
to be in road b, and assumes that there is no 
capacity restraint in a. Hence, a is characterized 
by a constant "freespeed" travel time, T5, and the 
segment supply curve is derived by a vertical 
addition of Ta and xb. We compare this to the 
result of the Wardrop scheme of vertically adding 
xa and xb, in Figure 4. x 
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a subset of the Urban Travel Demand Forecasting 
Project's sample survey of about 800 workers in 
the San Francisco Bay Area in 1975 indicate that 
the assumption holds up quite well; around 85% 
of BART riders chose the stations closest to their 
homes. 

2.4 The Complete Model 
We are now almost ready to put together our 

demand and supply formulations into a complete 
model. However, note a crucial problem in equili-
bration: while demand is in terms of individual 
work-home trip variables, our supply formulation 
is in terms of segment variables. One way to 
overcome this inconsistency is to make the follow-
ing assumption. We assume that the congestion 
effects due to a vehicle° entering a segment of 
length L] a distance /ii from the boundary towards 
which it is going, is equivalent to those due to a 
fraction S of a vehicle traversing the segment 
completely from boundary to boundary. 

Z.. 

d.. =  13 
1J 	L. 

the main mode "entrances" for mode m; and J is 
the total number of segments. 

Our model is now completely specified. It is 
described by the following equations. 

T is a vector characterizing the transportation 
system characteristics; ji denotes the segment where 
access occurs; and wi is a variable characterizing 
the work and home locations of individual i. Equa-
tion (8) is a representation of the result of the 
segment supply derivation in our previous section. 
Equation (9) can be derived, for example, in a way 
that parallels the approach of Talvitie-Dehghani 
[11]. 

Typically, however, there are hundreds of thous-
ands of workers using the corridor so that a 
straight individual enumeration, as implied by the 
above model, becomes too cumbersome to perform. 
We are forced, therefore, to use only a sample of 
the whole population. One easy scheme is the 
following. Sample individuals at a rate A from the 
given trip table. Observe the sampled individual's 
home and work locations, his socioeconomic char-
acteristics, and the nearest main-mode entrances 
and exits. From this information, we obtain: 

(4) 

What we are assuming basically is that a lot of 
congestion over a part of the segment is equivalent 
to a milder congestion over the whole of the seg-
ment. Our assumption enables us to aggregate in-
dividual demands for the various modes into seg-
ment demands for all modes. 

F, ;S(wk;...:T);Ym kj j 	j 
k=1,...,K 

j=1,...,K 

m=1, . ,M 

I 
D. 	= X O. .P1 
Jm 	i=1 

13 m 

Note further that 

J 
ti = y x 

i 
m 	ö..x. +  

j=1 1J Jm 	m 

where xim is the travel time over segment j by 
mode m; x im is the access travel time, which 
depends only on the individual's characteristics 
(i.e., where his home and work locations are) and 

J 

	

Pi 	J=1
— 	  

exp[b(~  1] 3m 
+ m) + aym] 

J J
m 
 

m 	 J 

X exp[b( X 6..x. 
ZcM 	7=1 1J JZ 

I 
D. = y d1jPm 

i=1 

x 	= S. (D,...
.Dj

:T ) j 
m 	m 

jl 	
M  

m = Sm(W1'Dj.l'
....Dj.M;T) 

1 	1 

Equations (7), (5), (8), (9) hold for i=1 	I 

j=1,...,J 

m=1,...,M 

where K is the total number of sampled indivi-
duals, each of whom is identified with the index k. 

Our model is then described by the following 
equations. 

D 	

1 y
K 

k 
im 	e k_ldkjPm (10) 

	

k-1 	K 

S exp[b( u dkjxjZ +~) + aykZ] 	m=1 	M 
(11) 

Ze.M 	j=1 

= Sjm (Dj1,....DjM;T) 

— k ~ x = S (w ;Dj 
k 1 

	DJ t~;T) 
m m 	

k 

Equations (10), (11), (8), (9) hold for k=1 	Y. 

J=1 ..... J 

Our task now is to solve these non-linear si-
multaneous equations for the equilibrium flow 
pattern {x)f }, {xk }. We will accomplish this task 
by applying the Fixed Point algorithm of Scarf. 

3. ON THE DETERMINATION OF AN 
APPROXIMATE FIXED POINT 

3.1 Scarf Algorithm Summarized 
In this section, we will present a restatement of 

Brouwer's fixed point theorem, and a constructive 
proof thereof developed by Scarf. The computation 

(5) 

+ xi) + ayl] 

(7) 

(5) 

(8) 

(9) 

(6) 	exp[b( L d, .x. <- x ) + ayk] 
Pk 	7=1 J DM 	m 	m 

P
m 

(8)  

(9)  
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Or 

xi + max [0,gi (x~ )] 

1 + X max [O,gZ (x )] 
Z 

Thus, the requirement that y = f(x) be a mapping 
from the simplex into itself implies that 

X [f (x)- xi] = 0 
i=1 

X i _ 

(14) 

of the fixed point in the proof forms the basis 
of Scarf algorithm so that the reader should get a 
fairly good idea of the nature of a Scarf algorithm 
from this exposition. 

The relevance of fixed points 
Perhaps it would be illuminating to discuss the 

Walrasian model of pure-exchange economy in 
order to motivate the use of fixed points? A fixed 
point of a mapping y = f(x) is a point 'x such that 
2=M),  i.e., a point that maps into itself. 

Let x= (x1, ... ,xn) represent the (non-negative) 
prices of commodities 1, ... ,n, and let the excess 
demands at this vector of prices be represented 
by the continuous functions gl(x), ... ,gn(x) which 
are assumed to satisfy Walras law, a law derived 
from a "budget constraint". 

Brouwer's fixed point theorem 
Let y = f(x) be a continuous mapping of the 
simplex into itself. Then there exists a fixed point 
of the mapping, i.e., a vector ̂ x such that 2=1(5:). 

Before we start the proof of this theorem, the 
concept of a primitive set needs to be introduced. 

Definition 
Given any list of vectors Xn+1, , , , ,xk in the 

~1 	jn - m 
vectors x , ... x 	, along 

,s  form a primitive set 
,xk is interior to the simplex 

0 and 
m 

simplex S the (n-m) 

with the m sides s 1, 
if no vector xn+1, 
defined by x. > 0, . 

y x.g.(x) = 0 i 
i=1 	i  

J1 
X. > min [x. , 1 

x
in-ml for 1 

iXil,.. ,im 

A vector z is said to be an equilibrium price 
vector if all excess demands are less than or equal 
to zero at this price vector, i.e., 

gi (SC) < 0, 1=1, . . ,n 

The computation of an equilibrium price vector 
is quite a difficult task to perform. One way of 
solving the problem is to transpose it into a prob-
lem of computing a fixed point, which can then 
be solved efficiently by the use of a Scarf algo-
rithm. Let us postulate a mapping and show that 
its fixed point is the equilibrium price vector 2. 
Consider 

xi + max [O,gi (x) ] 

Yi 1 + X max [O,gZ (x) ] 

We claim that the fixed point of this mapping 
is the vector 2. [At this point we will not toil over 
the proof of the existence of such a fixed point. 
We will simply assume that it exists.] A fixed 
point x* of the above mapping satisfies 

Note that the vectors in the list are indexed 
(n + 1), ... ,k because the indices 1, ... ,n are re-
served for the sides of the simplex S; that is, 
xi,i =1, ... ,n refers to the ith side of S. We now 
state an important lemma of Scarf's. 

Scarf's lemma [7] 
Let each vector in the list x1, , , , ,xn+l, , , , ,xk 

be labeled with one of the first n integers. Let xi 
(for j = 1, ... ,n) be given the label j. Then there 
exists a primitive set each of whose vectors has a 
different label. 

Now recall that a vector x is in the simplex S if 

xi > 0 	1=1,...,n 

and 

(12)  

(13)  

xi 2, max [O,g1(x)] = max [O,gi(x)] 
Z 

If ' max[0,g (x*)] is in fact greater than zero, the 
1 	1 

above equation implies that gi (x*) > 0 for every i 
with xi > O. Since all xi > 0 and some are 
strictly positive, this violates Walras law. We con-
clude that 2' max[0,g (x*)] =0 and therefore, 

1 	1 
gi(x*) < 0 i =1, ... ,m hence x* is an equili- 
brium price vector.  

It is clear that there is at least one i such that 

f. (x) > x . ~ (15)  

Label each vector xi (j =n + 1, ... ,k) in the 
following manner: 

label (xi) = i. 

where i. = min{Zf 
~ (16)  

> xZ} 
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j=1,. 	,J; m=1, 	M 

(21) 

X. 
Jm 

MJt. 
J 

(22) m=1, . ,M 

The vectors xi(j = 1, ... ,n) are labeled j. Now, 

the conditions of Scarf 's lemma are satisfied, and 
hence there exists a primitive set whose labels are 

all different. That is, there exists a primitive set 

i1 	Jn 
, ... ,x ) such that 

fi (x J ) > xi 	 j=j1,.. ,jn
• 

J 	 J 

the vectors are increasingly refined, a convergent 

subsequence of subsimplices may be found, which 

tend in the limit to a single vector x*. From the 

continuity of the mapping the vector x* must have 

the property that  

* 	* 
f, (x 	) 	> 	x — i=l, ,n (18)  

But (14) holds for any x, and in particular for x*. 
n 	* 	* 

 

[f 	(x) 	– 	x.] 	= 	0 
i=1 

(19)  

(18) and (19) imply that 
* 	* 

f . (X 	) 	= 	X . 
1 	1 

for 311 1 (20)  

demonstrating Brouwer's theorem. 

It is a fact that we cannot really go to the limit 
in an actual application on a computer. But the 

final primitive set with distinct labels could be 
averaged out and the resultant vector becomes an 

approximation of the true fixed point. Further-
more, we can make the approximation as good as 

we desire by simply taking a fine enough collection 
of vectors. 

This development is the spirit of Scarf 's algo-

rithm for computing approximate fixed points. 

More specifically, to use Scarf algorithm to com-
pute the fixed point of any continuous mapping 

from the simplex into itself, we must specify the 

following: 
— A finite list of vectors in the simplex 

— A Labeling Procedure 

— Replacement Operation 
— Final Termination Routine 
The algorithm then procedes as follows. Each 

of the vectors in the list is labeled according to the 

specified labeling procedure. An initial primitive 
set is created and a check is made to see if each 

of the members has a distinct label. If such is not 

the case, the algorithm constructs a new primitive 

set in a manner specified in the replacement oper-
ation and repeats the check to find out if the 

new primitive set is "completely-labeled". The 

process is continued until a completely-labeled 

primitive set, whose existence is guaranteed by 

Scarf 's lemma, is obtained. The final termination 
routine then averages out the vectors in the final  

primitive set to give a good approximation of the 
fixed point. 

Note that the labeling procedure is determined 
by what mapping is being considered whereas the 

creation of the list of vectors, the specification of 
the replacement operation and the final termination 

routine rely only peripherally on the specific 
mapping under investigation. 

3.2 Computation of the Equilibrium Flow Pattern - 
An Example 

A seemingly restrictive assumption that needs to 
be satisfied if we were to apply Scarf algorithm 
is the condition that y=f(x) be a mapping from 

a simplex into itself. However, we can define a 

suitable artificial mapping from the simplex into 
itself the property that its fixed point corresponds 

to the desired quantity which, in this case, is the 
equilibrium flow pattern of a transportation system. 

For the sake of exposition, let us, at this point, 

formulate a simple model. Consider the case where 

no equilibration needs to be done on the access 

components. Hence x m are fixed constants. 

Define 

im 

and 

	

1 	~J 

	

Tom M 	
T

. 

where ti is the upper limit of all 

xjmc[O,tj] 	j=1. 	J 	(23) 

Clearly the "vectors" Tim are in the simplex: 

T. > 0 	j=0,1,...J ; m=1 	 j 	
M 

m – 

and 

The assumption of no equilibration on access 

implies that we have determined all variables in 
the system defined by (8), (9), (10), (11) except for 

LximI. 
It is easy to verify that the following transfor-

mation satisfies the condition of Brouwer's the-
orem and has a fixed point that corresponds to an 
equilibrium vector [xi.] for our above example. 

G j (T) _ –1 5jm (Djl (t) 	D(Cl) m  ast. 
3 

cJ Gom (T) = 	- L G. (r) =1 ~m 

where 

1 CK  
m 	

~. 	 e 

xP[b(
L

J

b 

	

Jt

j 

	+ 	 yk]j lkj 	
bxrn  _ 	 L dljrl 	

(-M
L exP[b( E d b]Jtr ) 	 + ay

k 

Z=1 	
]lkj 	jZ 	Z 	l ) 

=1 	
(25) 

m=1,....M 

(17) 

where ii , ... ,i are all distinct from each other. 

1 	n 

Let us now demonstrate Brouwer's theorem by 

taking a finer and finer collection of vectors which, 
in the limit, become everywhere dense on the 

simplex. Each such collection will determine a 
geometric subsimplex with the above property. As 

J M 

X T. =1 
j=1 m=0 Jm 

(24) 
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~ 	. 
G. (T ) = T. 
jm 	 jm j=0 ..... J ; m=1,...,M (26) 

Associated with each 	is a unique jm jm 

D. (x
*
) = 1 

jm 	6 

	

dkj M 	J * 
exp[b( X 6

k 
.
3
x.
3/

+ b Z + ayi] 

	

Z=1 	j=1 

J 	
* 

K 	
exp[b( E 6kjxjm + b m + aymJ 

j=1 

The fixed point T* of the transformation defined 
by Equations (24) and (25) have the property that 

i=1,...,J j 
m=1 ,...,M 

It should be observed that at segment travel 

times x 1 , j =1, ... ,J; m =1, ... ,M, each and 
every worker in our sample plans his travel in 
such a way that the segment demands are 

3=1 . 	J 

m=1, 	M 

The travel times "supplied" by the transportation 
system in response to these demands, are, in turn, 
given by: 

j=1,...,J 

m-1,...,M 

which, in view of Equations (24), (26) and (27), 
turn out to be exactly 

j=1,...,J 

m=1,...,M 

Hence, as soon as we have [T*. ), the equili- 

brium flow pattern [x 
tm ] 

obtains immediately. 

Now we apply Scarf's fixed point algorithm to 

compute LTimj. By specifying a grid of vectors 

and utilizing a labeling procedure similar to (16), 
we get out of the algorithm a final primitive set, 

each of whose members is "close" to [T7,0. 0. To 

get a good approximation of [T I, we average 

out the members of the final primitive set in the 
manner outlined by Shoven in Appendix A of [9]. 
From the discussion in the preceding section, it is 
clear that we can get as good an approximation 

of [Tiro) as we desire by simply making the grid 

of vectors fine enough. Thus, Scarf algorithm can 
give us an approximation of the equilibrium flow 

pattern [x im) 
which can be made as good as 

desired. 

4. EMPIRICAL APPLICATION 
We are currently in tre process of applying our 

equilibrium model to the I-580 corridor in the San 
Francisco Bay Area. The I-580 model has the 
following characteristics: 

1. A maximum of 8 modes are available to each 
worker in the sample. 

2. The single-bottleneck formulation is used to 
characterize the supply equations. 

3. There are 9 segments in the corridor. 
Although we do not have at hand a final result 

of this study, initial runs of the model seem very  

encouraging. Without the Final Termination Rou-
tine, it costs less than $ 70 to run the model. Since 
the Final Termination Routine is basically a Sim-
plex algorithm, we wouldn't expect the cost to go 
up too much by incorporating it into the model. 
Far from being conclusive, our experience should 
nonetheless indicate the magnitude of the cost of 
implementing our model. We should add that our 
current programs are by far not the most efficient 
possible, and there is room for further improve-
ments. We will report our final results in a forth-
coming paper. 
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FOOTNOTES 
1) By equilibrium flow pattern we mean a complete list of 

mode splits on all levels of aggregation. From individual paths up 
to zonal or segment (a conglomeration of zones) volumes. 

2) Actually, since equilibration is done on persons rather than 
vehicles, in this paper, to be consistent, Î2 	should really be 
"the number of car-equivalents of an Express Bus divided by the 
number of passengers". 

3) The express bus travel time, so be more realistic, must be 
increased by the time needed for stops. This time is a function of 
stop spacing and volume entering and exiting the bus. The latter 
board/alight time is represented as a constant rather than func- 

j
, 	. 
X. = T. MJt} 
 jm 

(27) 

S jm (D j1(x*),...,DjM(x*)) 

* 
X . 
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tion, in a present application of the model. Also note that part of 
the auto volume can be diverted to arterials (assuming Ward-
rop's principle) without making the model more complex. For 
simplicity of presentation these details are omitted here. 

4) Some of the readers may feel uneasy about such a simple 
model of highway network performance. They are reminded that 
the current network algorithms also consider every link inde-
pendently, "load" the zones in one spot into the network and, 
thus, differ only marginally from the multiple bottleneck version 
here. 

5) "Access" will, from now on, stand for both access and 
egress. 

6) We should really write "vehicle or person", since in guide-
way modes persons are the basic units. However, we feel that 
equilibration will be confined to the highway and not guideway 
modes. Hence, we describe our model in a way that ignores 
equilibration on the latter modes. It should be clear, though, that 
our presumption imposes no restriction on the model's generali-
ty. 

7) The following example is borrowed from Scarf [6] . 
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