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Abstract 

Meteorological features (such as rain, fog, low clearance, etc.) cause a 
capacity reduction of a road section and this reduction is usually 
computed using the method of the superimposition of effects. We 
propose the setting -up of an artificial neural network that in real time 
is able to estimate and forecast a freeway road section capacity in the 
function of both meteorological conditions or traffic composition by 
using a layered feedforward network. 
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INTRODUCTION 

The fundamental equation of the flow provides a satisfactory representation of any relation among 
fundamental parameters, flow, density and speed, as bidimensional projections. What is of 
particular interest with regard to control problems, is the prediction of any possible traffic change, 
from a state of free flow to traffic congestion and vice versa. Since such changes are likely to 
occur for flow values which are not always equal to capacity (Forbes and Hall, 1990), they tend to 
represent a very non linear process. Other studies (Ferrari, 1988), (Ferrari, 1989), (Ferrari, 1991), 
(Ferrari, 1992) focused particularly on the parameter of speed (an ARIMA process, autoregressive 
integrated mobile average of the first order) and prediction of which may be used to evaluate flow 
stability. 

Flow characteristics are obviously subject to weather conditions, such as rain, snow, fog, 
brightness, etc. The macroscopic effect of these conditions in reducing capacity have often been 
treated in published articles (Carter et al., 1982), (McShane and Roess, 1990), (Transportation 
Research Board, 1985), and to a lesser extent, their influence on subsequent changes in the flow 
characteristics. A recent study (Seddiki, 1993) highlights the variation of the flow curves in the 
presence of rain. This suggests the existence of complex functional relations, depending upon time 
and space, which should be taken into account in describing the flow process. 

According to the theorems reported in the next section, a layered feedforward neural network is 
guaranteed to approximate a functional relation RN 	RM, provided that a proper number of 
hidden layers and neurons are used. Therefore, it is a worth approaching the mathematical 
problem of the use of neural networks for the analysis and prediction of the vehicular flow 
conditions. The reconstruction of flow relationships, which don't vary with time, is to be 
considered as a step in the implementation of a flow model, to be used in a freeway traffic control 
system. 

AN OUTLINE ON ESTIMATION OF CLASSIFYING SYSTEM PERFORMANCE 

The word "classifier" is the one most used to describe learning systems. The quality of a classifier 
is measured in inversely proportional way by the number of wrong classifications. The 
relationship between the number of errors and the amount of cases analysed is called the error rate. 
If the number of cases is reasonably high, then it will be called the "true" error rate. 

The "apparent" error rate of a classifier is the error rate resulting from the sample cases used in 
learning it (training or learning set). This kind of error is also known as resubstitution or 
reclassification error, and it tends to be polarized optimistically; thus the true error rate turns out to 
be invariably higher. The implementation of a classifier whose prediction capability is found only 
in the learning data not in new cases, is obviously useless. Consequently, the employment of only 
the apparent error to evaluate the performance of the classifier may lead to wrong results. The 
problem is therefore that of finding the proper number of cases, so as to make the apparent error 
uninfluential. The relationship between the number of test cases and the sample test error is 
empirical. Generally, it may be observed that, with a sample test of 50 cases, the resulting error in 
the evaluation of the true error is slightly over 10%. With a sample of 250 cases, the error is 
usually 5% and with 1,000 cases it is basically nil (Weiss et al., 1991). When the number of cases 
is not great enough to allow a proper partition of data into the two train-and-test sets, the 
performance of a randomized partition into the two sets might turn out to be difficult. In such 
cases, data resampling methods may prove helpful for a better evaluation of the true error. 

The use of neural networks as classifiers has been consolidated by several theorems which have 
been published. (Girosi et al. 1991) reported that a single hidden layer would be sufficient to 
approximate any continuous function. The usefulness of such a result, depends upon the number 
of necessary hidden units whose correct evaluation is not a priori known. In some cases, this 
number might rise exponentially, according to input units (Hertz et al. 1991). Other authors 
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reported a not strict demonstration, which was first introduced by Lapedes and Farber in 1988, 
according to which two is the sufficient number of hidden layers. The main points of such a 
demonstration are: 
• any "reasonable" function may be represented by a linear combination of localized functions, 

whose value equals zero over an almost complete existence interval, the only exception being 
in the limited region of pertinence; 

• these functions may be implemented by a network with two hidden layers. 

The choice of the optimal size (in the sense of performance) of a network for a given application, 
is still controversial. Therefore one of the best methods to identify such an optimum, is that of 
oversizing the network and of successively reducing it. 

The learning of a network is an iterative process, therefore it should be clearly specified 
convergence criterion. It must be added that one kind of unexpected behaviour in the mapping 
networks, might be overtraining: in this case, an increase in learning cycles leads to a asintotic 
worsening of the network performances. This problem is still unknown, and seems to be 
connected with the way in which the network builds up its own mapping. The point at which the 
learning process is to be stopped is usually detected empirically by measuring the performance of 
two distinct sets of data: the learning and testing set. 

Any increase in the learning set corresponds to an increased complexity in the decision limits; 
learning time would therefore be typically longer. In this case, the convergence of learning turns 
out to be remarkably slow. Since the number of parameters in a network is frequently huge, the 
detection of weights by the related minimization problem may be difficult. In certain cases, if the 
number of variables is particularly large, computation could turn out to be an unsolvable problem, 
therefore proper minimizing techniques may be required. The use of these techniques provides a 
shortening in the time needed for computation and a significant widening of the set of problems, 
which may then be positively worked out (Shanno 1990). Resampling techniques provide a 
reasonable alternative. The values of the connections, chosen before learning, contribute to the 
elimination of the local minima. The initialization of the connections by low random values, is the 
only rule which has been commonly followed (Weiss et al. 1991), (Wessels et al, 1992), since 
high values cause hidden neurons to be either too active or too inactive, and therefore not 
susceptible to the learning process. The random partition is aimed at breaking up eventual 
symmetries which may rise inside the network. 

Back-propagation 
A backpropagation network has been shown to be capable of learning even complex problems. 
Furthermore, it can be successfully applied to prediction problems (Klimasanskas 1992). In certain 
cases, however, it might happen that the network doesn't work at the first set up, thus a further 
adaptation of some parameters is required. 

To overcome this limit, new learning techniques have been introduced; among them, can be 
mentioned: the Extended Delta-Bar-Delta (EDBD), the Projective Backpropagation (PBP), and the 
Direct Random Search (DRS). The problems for which a solution is needed are: an appropriate 
choice of the descent step in the search for the minimum (EDBD); the global minimum 
identification, also in the presence of broad noise, without being selective at higher frequencies 
(DRS). The PBP performs the mapping of the input space into a sphere (like a z transform) thus 
allowing a simple construction both of plan and elliptic spaces. The convergence is fast and can 
guarantee a good degree of immunity from noise. There are several variants of backpropagation 
techniques. One variant is that which uses the Ordinary Differential Equation (ODE) with the 
advantage that it removes the need for setting parameters (Weiss et al, 1991). Another is 
represented by an architecture, called neural tree network (NTN), which is made of a tree endowed 
with a single neuron layer for each of its nodes. The final structure is not set in advance, but is 
defined through learning (Sankar et al. 1991). Other studies (Yu X.H. 1992), demonstrated the 
necessity of employing non conventional algorithms (in other words, the algorithm described by 
Hecht-Nielsen 1991) for backpropagation learning, since this latter might not converge into a 
global minimum, for a given configuration of weights. Furthermore, even if the error surface of 
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backpropagation is without local minima, the learning algorithm might fall into a local minimum, 
with considerable consequences even on the convergence speed of the algorithm itself. 

Within the project of a BP network, one or two hidden layers can be used (a higher number would 
be of no advantage). With this structure along with a sufficient number of neurons, the network 
will be able to approximate any function. As was previously pointed out, the problem of a correct 
sizing of the network is still open; furthermore the proper size is often (tautologically) thought to 
be the one that gives the best predictions (in the sense of performance) (Weiss et al. 1991). Some 
experiments (de Villiers et al. 1993) have shown that, given equal complexities, the two 
architectures behave in the same way, with the only exception being a four-layer network, which 
is easy to fall into a non global minimum. (The complexity of a network can be measured on the 
basis of the Vapnik-Chervonenkis size (VC), that is strictly connected with the number of weights 
found in the network. 

In short, the learning process of a backpropagation network is a complex problem: it is necessary 
to determine its architecture (number of neurons, number of layers), size and characteristics of 
learning data, starting values (starting weights) (Rohani et al. 1992), the most suitable learning 
parameters (learning steps) and finally, it is necessary to avoid overfitting. The above-mentioned 
indications might be further reelaborated and better arranged. It is important to use two or three 
disjoint sets of data for the network implementation: one for learning, one for validation (in order 
to avoid over-training) and one for testing (this latter will include data which have never been used 
before) to evaluate network performance. The learning step is most important and plays a crucial 
role in the practical application of backpropagation. If too small, the convergence of the whole 
network would turn out to be too long, if too big, there may be oscillatory phenomena (Davalo et 
al. 1991). Nonetheless, with any network, an infinitesimal learning step would lead to the 
discovery of those weights which give the lowest possible error (Weiss et al. 1991). 

In order to improve learning time, (Allred et al. 1990) suggested the use of the following 
techniques: 
1. the learning process is to be limited to those examples, for which the network exhibits incorrect 

values, while it is to be enlarged to all the examples when performance improves; 
2. fastening learning process of those neurons which do not turn out to be susceptible to the 

example data; 
3. optimizing the learning rate together with that of momentum. 

With regard to this last technique, the proposed learning rate values, R., are lower than or equal to 
Xeff (included between 1 and 3 in the absence of momentum, µ), and between lower values in the 
presence of momentum, µ, according to the following relationships: 

µ=0.51/n 	 (1) 

X _ Xeff (1-1-) 	 (2) 

where n is the size of the learning set. The value of the momentum, µ, is usually assumed to be 0.9 
(Hecht-Nielsen, 1991). Within applications of Boolean problems, Burkitt et al. (1992) choose a 
momentum values of 0.94 and 0.86 respectively for a problem of parity (XOR) whose dimensions 
are two and four. 

Drucker et al. (1992) suggested the opportunity of using a double backpropagation in order to 
increase the generalization of the network without enlarging the learning set. A further approach 
aimed at obtaining a reduction in learning time and at enhancing its robustness to avoid local 
minima, was proposed by Denoeux et al. (1993). According to this technique, weights are 
initialized by means of significant data prototypes before using the entire learning set. This 
method provides positive results with regard to problems of both sample recognition and function 
approximation. According to the authors, this approach also results in a better generalization. The 
question as to what the best number of prototypes should be used, remains controversial. 
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Figure 1 	A feedforward network architecture 

APPLICATIONS TO û ßANSPORT 

Future systems for traffic control, related information management, transport systems planning 
and traffic safety, will be increasingly based on computer systems, in order to obtain all the 
necessary performance with regard to speed, comfort and safety (Wild, 1991). 

In a recent overview (Burke and Ignizio, 1992), neural networks have been regarded as an 
alternative to traditional methods, such as linear programming, discrete optimization, statistical 
discriminant analysis, regression and cluster analysis. The application fields are several and 
multifaceted: recognition of samples, recognition of signs, analysis and recognition of the voice, 
making decisions, mapping. 

Even though neural networks are far from being the universal panacea, possible advantages are 
considerable. Neural networks may also be used as an integrative or substantial support to other 
techniques, such as expert systems or fuzzy logic (Nanda and Kikuchi, 1992). The potential of 
neural networks in the field of non-linear dynamic systems, statistical analyses, and modelling in 
general, has been investigated by several authors (Narendra and Mukhopadhyay, 1992), (Sartori 
and Antsaklis, 1992). A recent review of the advantages connected with the use of neural networks 
is in (Mussone, 1994). 

The sectors in which AANs have been successfully applied are the following: 
• Evaluation and updating of O/D matrices for extra-urban flows (Yang et al, 1992); 
• Identification of driver behaviour with advanced traveller information systems (Dougherty and 

Joint, 1992), (Yang et al. 1993); 
• Freeway incident detection (Ritchie and Cheu, 1993); 
• Recognition of images to detecting flow (Belgaroui and Blosseville, 1992); 
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• Prediction and recognition of urban traffic condition (Dougherty et al. 1992a), (Dougherty et 
al. 1993); 

• Prediction of freeway flow data (Dochy and Danech-Pajouh); 
• Evaluation of gap (area of dilemma) at signalized intersections (Pant, 1994). 

A recent overview on some of the above-mentioned fields of application, may be found in 
(Ambrosino et al. 1994) and (Mussone, 1994). 

DATA COLLECTION 

The data used in the present study, were collected in the "Easy Driver" environment (FIAT, 1992), 
which is a traffic control system which was employed in Italy on the Padua-Mestre (Venice) 
motorway section from the tollgate of Dolo to the tollgate of Mestre, over a distance of about 11 
km. 

Along this section detection stations are set up as follows: 10 stations (corresponding to 20 
detection points) for the detection of flow characteristics (one every 1,000 km) by using 
electromagnetic inductive loops (Figure 2), five stations for detecting visibility, 2 for weather 
conditions, two the presence of ice, 10 portals with variable message signs for driver information. 
The portals are set up along the whole section. 

Over a nine-month period, from December 1992 to August 1993, flow values relative to the 
following parameters were collected: 
• average spatial speed 
• density 
• traffic flow 
• percentage of heavy good vehicles 
• brightness 
• weather conditions 
• visibility 
• presence of messages on the variable message signs. 

Brightness evaluates the presence of light according to a scale from 1 (night) to 6 (vivid light). 

Direction of flow  

Figure 2 	Data detection system 

Data were grouped according to the results of each single detection station and identified by the 
microprocessor which controls their loops. The formal difference among these "files" essentially 
consists of the different sampling period, which ranges from 20 to 120 seconds for the flow data 
(density, average space speed and vehicular counting), from 60 to 120 seconds for weather 
condition, 2 minutes for brightness, 10 minutes from messages and 15 minutes for the flow 
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characteristics per vehicular category. The subdivision of the flow into light vehicles and heavy 
goods vehicles was performed on the basis of ANAS Italian code, thus vehicles belonging to the 
first three categories (up to 5.5 meter long) were considered as light, whereas those belonging to 
the last three categories (longer than 5.5 meters) were considered as heavy. Only the messages 
concerning accidents, queues or fog were taken into consideration. Furthermore, among the data 
taken into consideration, there were also included the data on the correct working of the inductive 
loops, on the basis of which, the rejection of any flow datum could be decided. Information on 
weather conditions was not monitored on all the sections and the sampling period adopted within 
file data was different. A procedure which, starting from the flow data file that exhibits the 
maximum space-time resolution, associates all consistent compatible data to that file, thus 
generating a single "file" whose records include all useful information. For each station the 
records available were almost 360,000. 

It was not possible to use the information relative to rainfall; the information relative to the 
presence of rain is fairly frequent within data and is not significant in the description of the traffic 
flow process. During the detection of data, no presence of snow nor ice was detected on the 
freeway pavement. 

The step of precomputing data and performed through a PC 486 DX66, by a program written in 
Superbase language, required on average of about 2 days computing for each station under 
consideration. The set of data was then classified for each section, according to the possible 
combinations which the considered variables can have. 

With regard to the learning process of the neural network, two sets of data, one for learning and 
one for validation, were created through an extraction at random from all the data. Data are then 
normalized according to their highest values; results are therefore normalized to those values. For 
the traffic flow, the maximum value of 3,000 veh/h for a single lane was assumed; for speed the 
maximum value was 200 km/h. 

Pre-elaboration of data 

As has already been pointed out, data detection does not occur at the same time, and time 
differences may be found among both stations and for different types of detection. Moreover, 
some stations were not endowed with all the detecting parameters. Therefore, it was necessary to 
find an answer to the problem of making all data homogeneous in terms of time and space, so that 
all data from the different sections and all types of detection could be used. 

The spatial association concerns the files of data relative to brightness, meteo and VMS messages. 
The files relative to flow categories and diagnostic of detection loops, are available for each 
section. The criterion for the file relative to VMS messages, which have been sent along the 
freeway before the sections taken under consideration, was that of associating this information to 
all the sections. In fact the messages sent through the signs are likely to affect the whole 
motorway. The remaining files were grouped according the criterion of spatial proximity. 

For time resolution, the file of reference was the flow detection file, which turned out to have the 
major detection frequency. Flow data were then associated with remaining data. The intervals 
found in the sampling of subsidiary data, may be completely or partially overlapping over the 
intervals found in flow data. In the first case, complete overlapping, the subsidiary datum must be 
associated with the flow datum; in the second case, the association is made with the subsidiary 
datum, which turns out to have the major overlapping, or with the following datum in case of 
equality. When the detection frequency is much lower than the average, a gap in the detection 
process should be suspected. In this case, the latter detection is considered valid for a period four 
times as long as the average. If no further detections are available, data cannot be associated. All 
the data are normalized according to the maximum value they can exhibit, this being a specific 
necessity for the neural network shell that is being used. In Table 1, these values are reported. 
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Table 1 	Range of values used to normalizing variables 

Parameter 	 Min 	 Max 
Flow (veh./h) 	 0 	 6000 
Density (veh./km) 	 0 	 150 
Speed (km/h) 	 0 	 200 
Heavy vehicles% 	 0 	 100 
Brightness 	 1 (darkness) 	6 (vivid light) 
Visibility (m) 	 0 	 >520 
Meteorological 	0 (serene) 	1 (rain) 

2( snow/ice) 
VMS 	 0 (absence) 	2 (queue) 

1(incident) 	3 (fog) 

Data classification 

The several flow conditions detected on a motorway usually are fairly different in their frequency: 
The samples of unstable flow or near to capacity, for example, are far less numerous that those 
relating to stable flow. Since the aim is to represent all the features of the flow, the extraction of 
the sample for the learning process should be preceded by a data classification, grouping data into 
categories. 

On this purpose, a further variable called CATEGORIA, was created within the database 
ESTRATTI. This variable was associated to a first associating criteria which is based on the 
detection of the following information: presence of rain, snow/ice, VMS messages, percentage of 
heavy goods vehicles (the mean value among the three lanes), visibility and brightness. 
Considering these values as a part (bit) of complex information (byte), the category which the 
datum belongs to, is then represented by a binary word, which is to be built up for this purpose. In 
the present case, 8 bits are enough to identify the various cases. 

If all the information is found, the maximum code of the variable CATEGORIA will be a value of 
175. Therefore, a value of 255 has been used to classify those records which could not be used for 
this particular task since they did not include all the subsidiary data. 

A second classification was performed according to density. A numeric variable DENSCLAS, 
represents a density category which is calculated according to the following algorithm: 

DENSCLAS = (density13+1)*[-(density539)] + (density/10+10)*[-(density > 39)] 	(3) 

where density is the variable including the density value. The expression in the square brackets 
represents a logic IF: when it is false (in SUPERBASE) its value is 0, when it is true, the value is 
-1. The purpose of this approach was to separate the density categories which were close to 0, 
from those which were close to saturation, because a greater resolution is needed in the first case. 
Density classes whose values are lower than, or equal to 39 veh./km, have a resolution of 3 
veh/km, the remaining classes have values of 10 veh./km. The choice of the value 39 (veh./km) for 
the density, was performed empirically, by considering such a value as reasonably capable of 
including all the optimum density values which may occur in any flow condition; moreover, 39 
can be divided by 3 and 40 can be divided by 10. The merging of the two variables (CATEGORIA 
and DENSCLAS) is called COMPINDEX, and defines the classification key. 

The extraction of random samples 

Since all the characteristics of the process should be represented, the extraction of data is 
performed by class of data including a maximum number of elements, consistently with the mean 
frequency of classes. This problem rises because of the non-homogenous distribution of data 
among classes. In fact, some classes have far higher frequencies which correspond to stable flow 
conditions, whereas others have a few elements, corresponding to the particular features of the 
parameters or to unstable flow conditions. 
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The aim of the extraction is that of obtaining the highest possible number of elements from each 
class while keeping the number of the elements extracted from each class as equal as possible. 
This criterion, I, is represented by the following relationship: 

N~ 
(N-N;)2 

i=1 
Nc 

where Ni represents the number of samples which could actually be extracted (if the number of 
samples to be extracted is higher than the number of elements of the class, Ni equals this latter); N 
is the number of samples whose extraction was expected, and Nc is the number of the classes 
found. Obviously, N is always higher than, or equal to Ni. Therefore, if all the classes contained at 
least N elements, the indicator I would equal 0. Since this does not occur other than with values of 
N=2, and moreover, since a good homogeneity of the whole sample is desirable more than the 
homogeneity of each single class, the values for N are chosen in such a way that I <_ 2. For the 
model, the number of extractions from each class were found to consist of 5 elements. It can be 
observed that the low frequency in each class is fairly well compensated by the iterative learning 
procedure of the neural network, which considers the same learning set several times. 

Section 8.1 was chosen to reconstruct the flow relationships curves. This choice was based on the 
fact that proximity to the exit tollgate leads to a frequent presence of queues, therefore the density 
values are likely to increase up to the optimum density. It is assumed that in this section the 
distribution of data is better than that found in sections which are a longer distance from the 
tollgate. Furthermore, the presence of all meteorological detections in this section led to disregard 
of the sections towards the tollgate. The number of records extracted from the detecting stations 
was 360.000, and became 346.000 after the rejection of those records which turned out to be 
incomplete or mistaken. The classes were 191. The extraction of 5 elements from each class gives 
a sample of 811 records (complete by 85%). From this sample, two sets of data, test and learning, 
were then extracted at random: 405 for the first set and 406 for the second set. 

The neural network model 

The implementation of a feedforward neural network model, with backpropagation learning, 
requires the determination of the proper number of hidden neurons and layers in the attempt of 
minimizing the error on both learning and test data. The optimum configuration of the network is 
necessarily linked to the phenomenon of overfitting. Recent studies (eg Master, 1993) have 
suggested that overfitting essentially occurs because of two main reasons: first, the network is not 
properly sized compared to the available data; second, data are not sufficiently representative of 
the function to be implemented, thus the two sets of data, the test and train sets, are remarkably 
different from each other. 

Besides the modification of the network size, it is possible to modify the transfer function of the 
single neurons as well. Theoretically, all the neurons in all layers may be given any transfer 
function, provided it is continuous and infinitely derivable. The applications of this architecture, 
which are teated in published articles, use a linear transfer function for the first layer, namely that 
of the input; the same method is then applied to each model which is implemented in this research. 
In fact, all the attempted applications of different transfer functions have provided not satisfactory 
results. A further device, whose widespread use may also be found in literature, is that of applying 
the same transfer function to the neurons belonging to the same layer. This should simplify the 
determination of the optimal configuration. 

The transfer functions which were adopted for searching the optimum are the sigmoidal, the 
hyperbolic tangent (tanh) and the sinus. The sinus did not provide appreciable results, since it 
required a higher number of cycles while the learning error remained unchanged. The hyperbolic 
tangent gave comparable results. 

The architecture of the model implemented to analyze flow-density and flow-speed relationships 
by using density as input variable and flow and speed as output ones, it not less of meaning 

I= (4) 
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because these relationships are not bijective but they are injective only for density. The idea of 
setting the speed value at the output layer, instead of creating a further model with density as input 
and with speed at output, has derived from the consideration that a relation Rn-* R2  , rather than 
Rn_ R1, allows a better representation of a process which is characterized by three joint 
variables; the resulting error surface is undoubtedly more complex with a relation R11-4 R2  and, 
by this way, the neural network can learn problem complexity better . 

It is noticeable that high values of 7,, X=5, do not provide appreciable results. This is presumably 
due to the fact that an excessively large learning step is a constraint for the determination of too 
localized minima in the error function. The configuration set out in Figure 3, is the one which 
gives the best results: a network endowed with a single hidden layer having 4 neurons with a 
sigmoidal transfer function. A comparable RMSE is shared by a two-hidden layer network, 8 + 4 
neurons, with sigmoidal transfer function, yet the error rate is remarkably worse (namely it is more 
polarized). Moreover it turns out to have worse performances with regard to the flow parameter 
which is instead the most important one. Other configurations with a different number of neurons 
or with different transfer functions, have not given comparable results. 

linear 

density 

meteo 

clearance 

brightness 

%heavy vehicles 

VMS messages 

flow 

speed 

Figure 3 	Optimal model for reconstruction of flow relationships 

To better evaluate the importance of the learning step, the above mentioned configuration was 
studied more in detail. The best results are obtained with a learning coefficient X=0.5 and with a 
momentum term 11=0.6.  The best configuration is that obtained with 60,000 iterations. The flow 
error is RMSE=0.09330; error percentage = 0.31598; mean error = 0.06567; speed error is RMSE 
= 0.06322, error percentage = 0.12188, mean error = 0.04558. The model used for the 
reconstruction of both flow-density and flow-speed relationship is obviously the same one, as the 
same is the sample file used for the employment of the network. Results are set out separately for 
exposition purposes. 

RESULTS 

Flow.Density relationship 

The results reported in the following figures, are only the ones which can explicate better the 
possibilities of this model. As was already pointed out, provided a given knowledge for the 
learning process, this model allows the network to predict the behaviour of the process in the 
presence of changing input data, through minimizing the error of the classifier. This explains the 
reason why this particular model cannot give any reliable result with regard to snow, since such a 
meteorological event never occurred. 
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The analysis of Figures 4 and 5 highlights the influence on the flow values due to the used 
parameters. Visibility and percentage of heavy goods vehicles lead to considerable modifications 
in the curve, and the consequent effects are clearly distinguishable. Interestingly, variations in the 
optimal density value are induced not only by the corresponding variations in the flow maximum 
value, but also by changes occurring in the input parameters. This fact however, requires further 
validations on other data in other contexts. The effect of the VMS messages may be observed in 
Figures 6 and 7; in conditions of traffic congestion, the effect of VMS messages may be evaluated 
in terms of a clear improvement of the flow process rather than in an increased capacity of the 
system itself. 
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Figure 6 
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Moreover, Figures 6 and 7 clearly demonstrate that both brightness and rain exert a slight 
influence on the flow characteristics. This result was somehow expected with regard to brightness, 
since this parameter is more likely to influence the degree of danger in traffic flow conditions. 
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With regard to rain, the result is only partially valuable, since the datum concerning rain quantity 
could not be used: the information about rain (present in about one third of the data) does not 
allow the system to discriminate a variation in the curve, because of a considerable scattering of 
this parameter. Any constraint consequent to rain (heavy rain for example) should be probably 
ascribed to visibility. Figures 8 and 9 show the combined effect exerted by both the percentage of 
heavy goods vehicles and reduced visibility. It is observable that the presence of variations in the 
percentage of heavy goods vehicles, corresponds to slight variations in the optimal density value. 
The latter turns out to be not susceptible to the variations in the parameters, and tends to stabilize 
on a single value. 
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Figures 10 and 11 show the first two curves obtained through the same combinations of variables 
as those reported in the previous chapter with regard to the flow-density curve (Figures 4 and 5). 
These curves are undoubtedly less significant than those concerning flow-density. The influence 
of the variables on the definition of the curves is less remarkable or totally absent. A decreased 
maximum flow value in the flow-density curves, corresponds to a decreased free-speed value in 
the speed-density curves. The trend of the curves is fairly similar, since their shape is mostly 
concave, and only in a few cases it turns out to be convex. Furthermore, all the curves 
asymptotically fall to zero on the density axis. 

The relationship among flow, speed and density do not exactly correspond to that of the 
fundamental flow equation. The available data, however, are not sufficient (in statistical sense), so 
as to allow a complete removal of the noise which may be found on the flow values. Therefore, it 
is not possible to draw more precise evaluations. 
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Figure 10 Speed-Density relationship vs. 	Figure 11 Speed-Density relationship vs. 
clearance 
	 heavy vehicle percentage 

CONCLUSIONS 

The results reported in this study, show how the instruments and methods applied may help in the 
study of flow characteristics within a dynamic traffic process. The remarkable influence which 
some parameters have been seen to exert on the flow-density relationship, and which have been 
confirmed by analogous studies on traffic flow features (Seddiki, 1993), could be the subject for 
further research aimed at formulating a completely functional instrument. These results should be 
considered as descriptive, because it was impossible to use the data concerning rainfall and 
snowfall. Complete knowledge does not necessarily imply a larger number of data; it would 
simply require a longer follow-up period. It must be remembered that the reconstruction of the 
curves was made according to the data collected in a single detecting station. Nonetheless, the 
availability of more detecting stations, such as in the case of the Padua-Mestre motorway, allows 
the reconstruction of the flow curves for each station, and the parallel evaluation of their statistical 
and dynamic characteristics. 

The main applications of a model with such features are two: 
a) The evaluation of flow stability for a specific section. This approach is based on the evaluation 

of the sign of the first derivative on flow-density curve. 
b) The evaluation of the statistical characteristics of the section under consideration; the curves 

obtained by this method are a direct consequence of both the flow and other characteristics, 
such as for example, weather and geometric ones. According to the results obtained from the 
flow-density curves relating to the motorway Padua-Mestre, the capacity value is 3,600 veh/h. 
Such a datum would be unacceptable if it was related to a three-lane motorway. Yet, the 
presence of a toll-gate, the capacity of which was nearby 2,600 veh./h, justifies it. Therefore, 
the results cannot be applied to other sections unless the flow features detected by the different 
sections are comparable. This limits the possibility of making a generalization about any 
specific result. Nonetheless, it also represents an advantage, since the method guarantees a 
proper adaptation to the particular conditions of the section under consideration. 

The results which may be achieved through the ANN in the reconstruction of the flow 
relationships are fairly evident, even though the data provided here are partial. 

The reconstruction of these relationships obtained by neural networks shows the clear influence of 
both weather conditions and flow characteristics on the definition of the curve shape. In fact the 
above mentioned parameters, not only induce variations in the maximum flow datum, but also 
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lead to variations in the optimal density value. It is important to note that, this model provides the 
opportunity of performing the same reconstruction for any combination of the input variables, 
without the necessity of specific detections and with relatively slight errors. 

It is intention of the authors to carry out further experiments using other data, in order to 
investigate the impact of the meteorological variables, such as rain and snow, and to introduce 
further flow variables, such as headway. With the data they have at present, they are planning to 
evaluate the influence of vehicle length and distribution of vehicles over lanes, in the definition of 
the flow-density relationship. 
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Abstract 

In this paper we discuss the relationships between urban growth and 
the traffic environment by examining the relationships between car 
travel demand and a road network capacity. We assume that the road 
network in a city is fixed. The congestion level allowed by the city 
society is a parameter of the traffic environment. 
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