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Abstract 

The problem of defining the optimal network and the corresponding 
flows are classical problems in transportation system modelling. The 
path choices, the infrastructures and lines to be activated, the 
investment choices, correspond to decision problems that can often be 
formulated, in simplified version, in a format that can be faced by 
solving a sequence of shortest path problems. 
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INTRODUCTION 

Predicting accurate user flows in a transportation network and finding an optimal design of the 
network are classical problems in transportation system modelling (Gartner et al. 1976; Fisk, 
1986; Papageorgiou, 1991). One crucial issue in developing these models is the determination of 
the set of all the paths from any given origin o to any given destination d that a user can 
reasonably choose. Early all-or-nothing proposals assumed that the whole user flow from o to d is 
funnelled along the shortest, (or cheapest, or quickest) path. Subsequent stochastic network loading 
(SNL) models assumed that flows are spread over all paths from o to d according to a certain 
probability distribution. An intermediate approach consists in the preliminary determination of a 
restricted set P of "feasible" paths from o to d, with the stipulation that users can only choose 
paths from P. The choice of P reflects behaviour, service, and other aspects and in the context of 
random utility models corresponds to the choice set generation process (Manski, 1977). 

A well-known instance of this approach is the SNL logit model of Dial (1971), where flows are 
restricted only to eligible paths. Leurent (1994) further requires that origin/destination (O/D) paths 
be efficient (a precise definition of eligible and efficient paths will be given in the next section). 
He states "we believe that our numerical experiment demonstrates above all that path-based 
equilibration algorithms are much more efficient than link-based algorithms", and also "... It is 
remarkable that, if paths are identified, more behavioural models are easier to solve 
mathematically". A similar remark applies to traffic assignment procedures (such as the ones 
described by GuElat et al. 1990 and by Crainic et al. 1990) based on the solution of 
multicommodity network flow problems. 

Here we propose a fairly general strategy for finding a "good" set II of feasible O/D paths. 
According to this strategy, which will be called path composition, all paths in H are obtained 
through the concatenation (following suitable composition rules) of a small number of subpaths. 
All such subpaths share the property of being shortest paths from their own origin to their own 
destination. As a matter of fact, this path composition procedure has two main advantages: good 
realism (if the composition rules are well chosen, the resulting paths correspond to good 
approximations of real user choices) and polynomial complexity (the degree of the polynomial 
being the maximum number of subpaths in a final path). One can then rely on path composition to 
enhance the performance of traffic assignment or network design models. 

The overall plan of this paper is the following. The first half deals with path generation: after 
discussing in the next section some desirable properties of a "good" set of feasible O/D paths, in 
the following section we introduce path composition as a general technique for obtaining a set 
with such properties. This technique is demonstrated through some examples. Algorithmic and 
complexity aspects are emphasized. In the second half of the paper we discuss the use of path 
composition within traffic assignment and network design models. We shall illustrate our 
approach on the following three specific problems: traffic assignment on a road transportation 
network (problem road) or on a collective road/rail transport network (problem rail), see the fourth 
section, network design for a road/rail integrated transportation system (problem network design), 
see the fifth section. The models are proposed for different requirements and for different 
economic, organizational and layout constraints. The complexity of the decision problems is 
discussed, and special cases are pointed out. The solution technique is presented in a unified 
framework, in terms of a combination of shortest paths on particular networks. For a survey of 
network optimization algorithms, see (Ahuja et al, 1993; Simeone et al. 1988.) Although our 
discussion is focused on bimodal (road-rail) networks, many procedures (eg path composition or 
the two network design heuristics) are still applicable, with obvious changes, in the context of 
single-mode or arbitrary multi-mode networks. 
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HOW TO CHOOSE PATHS 

Feasible paths 

The path that a user (passenger or car) could choose for a trip between an O/D pair must satisfy 
several constraints (Dafermos, 1972; Ben-Akiva et al. 1984; Ben-Akiva, Lerman, 1985). In 
particular, the time/cost of the path cannot be too far from the optimal one (a path with this 
property will be called efficient). Nevertheless, the number of paths satisfying such constraints is, 
in general, too large. In fact, assuming only the time/cost efficiency constraints (the so called set 
of e-optimal paths), the number of paths is, in general, an exponential function of the number of 
arcs of the transportation network. Such set of paths will contain several pairs of similar paths (ie 
paths differing by few arcs), which are not significant options from a modelling viewpoint. 

To prevent these and other undesirable features, we shall impose on "feasible" paths some further 
requirements. Actually, we shall assume that a set of feasible paths (SFP) satisfies the following 
defining conditions, depending both on the structure of the problem (network, user behaviour,...) 
and the structure of the model (model purpose, approximations, complexity issues,...). 

Independence conditions 
• Given the transportation network (infrastructures, lines and rules), the SFP for a given O/D pair 

does not depend on the demand and on the SFP for the other pairs; therefore the overall SFP is 
the union of mutually disjoint SFP's, one for each O/D pair (we denote by SFP(o,d) the SFP 
between the O/D pair (o,d)). 

• The flow on each path of SFP(o,d) will be computed afterwards, either on the ground of the 
(o,d) demand and the generalized cost of the path, or on the ground of the overall flow 
distribution. 

Rule-based conditions 
• Each path must satisfy the rules of the transportation system (junctions and transfers, 

monotonicity, constraints depending on fare regulations, sequence of modes,...). 

Efficiency conditions 
• Each path must be efficient, ie the generalized costs of the given path and of the optimal one 

should differ by less than a given percentage. 

Dissimilarity conditions 
• Any two distinct paths in the same SFP(o,d) must be significantly different, ie at least a given 

fraction of their length must use different arcs/nodes of the transportation network. 

Eligibility 
• Each path in SFP(o,d) must have the property that, for any arc (i,j) along the path, the distance 

d(o,i) should be smaller than d(o,j): the distance can be either the euclidean one or the length of 
a shortest path on the network. 

User behaviour conditions 
• Each path must correspond to real options selected by the user and must satisfy the constraints 

depending on the user behaviour. 

Complexity conditions 
• The number of paths in each set SFP(o,d) must be small enough and the running time required 

for path generation, flow simulation and optimal flow management must not grow too fast as 
the network size increases. In practice, one must be able to run these procedures, say, on a 
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workstation; moreover, the organization and the information flow must be simple enough to 
allow for an efficient use of the system for design and management purposes. 

These general defining conditions will be translated into modelling and algorithmic terms in the 
next section. 

The SPF's can be used both for transportation system analysis and for designing good strategies 
for system improvement. The concept of feasible path is very general and could be adapted to 
several applications. Meaningful path types are the following: 

Access/exit path 

An access/exit path is a path on the road network either from the origin to a train station where a 
given line is taken (access path), or from a train station to the destination (exit path). The concept 
could be easily generalized to other bimodal transportation systems. 

Let G be a bimodal road/rail network, (o,d) an O/D pair, tl a train line defined by the sequence of 
stop stations {s ,s2,• • •,sk) , d;i the generalized cost between two stations i and j on the line tl, 

7t;[7t;] the shortest path from o to s;[s; to d] on the road subnetwork, d;[d;] the corresponding 
generalized cost. 

Let us call the path an access path if: (di- + drk) = min  o;1! dik ). 
i 

Let us call the path an exit path if: (dir  + dr) = min  (dii  + 

In other words, both the departure and the arrival stations are chosen so as to minimize the total 
generalized cost. 

Viable paths 

Let G be a bimodal road/rail network and (o,d) an O/D pair. A path It from o to d may contain 
both road-arcs and rail-arcs. However, a user would hardly choose a path 7C along which he takes a 
train, gets down at a certain station, goes on by car, and then takes another train. More formally, 
let us call a path it viable if it has no more than one maximal rail-subpath, that is, if any two non 
incident rail-arcs are connected by a rail-path. Notice that: a viable path can be a road-only path; 
the road subpath of a road/rail path is not necessarily an access/exit path; moreover, in a shortest 
viable path the road access subpath is the shortest road path to reach the station and the road exit 
subpath is the shortest path from the station to the destination. 

In the concept of viable path, train lines are not considered; each rail-arc has an average 
generalized cost and the cost of a sequence of rail-arcs is simply the sum of the arc costs. 
Therefore, in a shortest viable path, the rail-subpath is the shortest path between the two loading 
and unloading stations on the infrastructure rail subnetwork. 

Path composition 
The basic idea of path composition is to divide each path into a given (small) number of subpaths, 
where each subpath is optimal (with respect to a given objective function). The number of nodes 
that are candidates for being a junction between two subpaths is relatively small and two paths 
belonging to the same SFP(o,d) must differ by at least a junction node. Path composition reflects 
one significant feature of user behaviour, namely, the decomposition of a goal (planning an O/D 
itinerary) into a sequence of subgoals (planning intermediate stages of the itinerary). A more 
formal way to present this procedure is the following. 

Network 
• A set P of O/D pairs. 
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• A set N of nodes and a set A of arcs. 

Let n =INI, m = IAI, p = IPI. 
• Each arc belongs to a unique mode. 

Each node belongs to exactly one of the following types: 
• O/D nodes. They are incident only to road-arcs and their total number is z; 
• Road [rail] nodes. They are those infrastructure nodes that are incident only to road[ rail] arcs; 

let NR [NS] be the subset of road [rail] nodes (nr = INRI, ns = INS!). 
• Mode-transfer nodes. 
• Lines are pre-defined single-mode paths on the network. The nodes along a line may be 

loading/unloading stations, transfer stations or transit stations. Let L be the set of lines (1 = ILI) 

Input 
• A network G(N,A) (either infrastructure- or line-based). 
• A set of attributes for each arc or subset of arcs (mode definition, line definition, and so on). 
• A set of subpath composition constraints. 
• A weight for each arc (eg generalized cost). 
• A set P of O/D pairs. 
• A set of path composition rules. 
• A set of path domination rules. 

Output 
• The sets {SFP(o,d)} for all O/D pairs (o,d). 

We first give a broad description of the procedure, then we shall provide more details. 

Procedure PATHCOMP 

Pre-processing 
• Find for each O/D pair (o,d) the set I(o,d) of network nodes that are candidates to be junction 

nodes. For problem road, the junction nodes are a subset of NR and must be chosen on the 
ground of the criteria set out earlier. For problem rail, junction nodes are transfer nodes from 
one line to another. 

• Let SPF(o,d) = 0 V(o,d) E P . 

Double tree 

• Find for each origin node o e O the shortest path tree from o to all nodes in I satisfying the 
subpath composition constraints. 

• Find for each destination node d e D the shortest path tree from all nodes in Ito d satisfying 
the subpath composition constraints (this can be obviously avoided if the network is 
symmetric). 

Path composition 
• For each O/D pair (o,d) and for each node i in I(o,d), check whether the composite path 

satisfies the path composition rules and it is not dominated by a path already in SFP(o,d). If 
both test are successful then add the path to SFP(o,d) else continue. 
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To have a fairly complete outline of the procedure, we must qualify the constraints in the double 
tree procedure, and the path domination rules. 

Subpath composition constraints 

The set of junction nodes I may contain different types of nodes depending on the problem. For 
problem road only road nodes are included, for problem rail only rail stations are included. No 
mode transfer takes place at any node in I. The modal split among different transportation modes 
is computed a priori, on the ground of different criteria. 

Given the O/D pair (o,d), if the node i E I is a road node, then the subpaths are simply the shortest 
paths from o to i and from i to d. 

If i E I is a rail node, then the subpath from o to i is a multimodal shortest path formed by a road 
shortest subpath from o to a mode-transfer node s (departure or loading station) and a rail subpath 
on a feasible line from the loading station s to the junction node i (which is a transfer station). 

The loading station s is chosen so that the overall path from o to i has minimum length. 

The subpath from i to d is computed in the same way, by connecting a rail subpath to a road 
subpath. 

Path composition and domination rules for problem road 

The paths in the same SFP(o,d) are computed for non decreasing values of the objective function 
(eg generalized cost). 

A path It' from o E O to d e D through the junction node i ' E I, is dominated by a path 7C from o 
to d through i" E I, already in SFP(o,d), ie with a generalized cost less or equal to 7C, if it contains 
a portion of it larger than a given threshold. 

Given: an O/D pair (o,d), the set I(o,d), a set of feasible paths SFP(o,d) already computed and a 
node k E I(o,d) not contained in the paths of SFP(o,d), it is easy to devise an algorithm that in 
time verifies whether the (unique) path through k is feasible (and, therefore, must be considered 
for inclusion into SFP(o,d)) or not. The overall computation requires O(nII(o,d)I) time. To include 
the path in SFP(o,d) some additional conditions must be verified (efficiency, at most one entrance 
into the same highway). 

The proposed approach can be easily generalized to multiattribute paths. In fact, if an arc is 
characterized by two or more weights (time, cost, generalized cost, etc.), we can define more 
sophisticated composition and domination rules with a small complexity increase. 

Path composition and domination rules for problem rail 

The main path composition rules for the rail case are the following: 
• only one path with the same train path (with the shortest road-path); 
• no more than two train lines (at most one transfer); 
• given the two train lines, the loading/unloading station minimizes the path length; 
• there is no transfer if the line reaches the destination; 
• only eligible paths are allowed. 

These rules lead to a complexity bounded by O(ns . n), since the number of transfer stations is 
O(ns) and the time for path composition given the access/exit paths and the two lines is 0(n). 

Also for the rail case the approach can be easily generalized to more sophisticated rules with a 
small complexity increase. 
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Given an 0/D pair 

The basic network: 
road and railway infrastructures 

The basic network: 
railway lines 

t 
Choice of road/rail infrastructural integrated nodes: 

sets NR,NS 
t 

Choice of road infrastructural transit nodes; 
choice of rail infrastructural transfer nodes : set! 

Optimal path generation: 
O —.NR 	NR—.I 	I—.D 
OB I 	f —.NS NS—.D 

Path composition Path filtering 
O—.D L 

Figure 1 	Path composition framework 

To give one specific example, in the Italy main road/rail network the above parameters take the 
values: z = 300 n = 1.000 (250 rail nodes + 700 road nodes) I = 900 train lines. 

Size of the input 

The network contains 0(n) arcs. In fact, G is a planar graph (therefore m = 0(n)), the number of 
attributes for each arc is given and the number of bits needed for time, cost and generalized cost 
can be also assumed to be given. 

The rail lines are I and the O/D pairs are p. 

Moreover, the input should contain the information concerning the subpath constraints and the 
path composition constraints. 

Size of the output 

In the worst case, the size of the output is given by the number of O/D pairs (=p), times the 
maximum number of feasible paths for a given O/D pair / max II(o,d)I<_nl, times the 

(o,d)e 0/D J 
maximum length of a path (<_n). 

Therefore the output size is 0(pn2). 

For realistic values of z and n, these complexity figures are large and become a crucial point of the 
procedure. Several techniques can be used in order to reduce the output. In particular, the number 
of feasible paths between a given O/D pair can be kept small by a filtering procedure (around 
4=10 for each O/D pair). Moreover, the average length of a path in practice is relatively small (< 
20 arcs) and only a fraction of the O/D pairs are considered (no 10.000). The resulting size of the 
output for the Italian road/rail network is about 1.000.000 entries. 

Complexity reduction techniques would affect most of the following procedures. 
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for the road subnetwork: O(p•nr) 
Preprocessing 

for the rail subnetwork: 0(I2) 

for road traffic: O(z•nr2) 
Subpath composition 

for rail traffic: 0(z•l.nr2) 

for road traffic: O(p•nr2) 
Path composition 	 Ij 

for rail traffic: 0(p•1•nr2) 

TRAFFIC ASSIGNMENT 

General remarks 

In the analysis of transportation systems, a basic module for simulating the system workload and 
behaviour is traffic assignment. System-based assignment, which is particularly meaningful in 
freight transportation, often leads to multicommodity flow models. On the other hand, user-based 
assignment often leads to nonlinear optimization or stochastic utility models. In either case, we 
shall argue that path composition is useful to enhance solution procedures in many practical 
situations. The subsequent flow assignment can be carried out either by a sequential approach (eg 
greedy), or by an equilibrium one (eg local search), or by global optimization (eg linear 
programming). Three examples are discussed below. 

Road traffic assignment 

To face the complexity issues due to the large number of paths that a user can choose and to 
simplify the model, many analyses of the traffic flow assume that all users, moving between a 
given O/D pair, will choose the same optimal path (Wardrop, 1952) or the k shortest paths (Shier, 
1976; Skiscim and Golden, 1989). This assumption does not correspond to the real pattern of the 
traffic flow. Moreover, the resulting model might be very sensitive to network changes, ie many 
routes may change as a result of a few minor changes in the network parameters, with major 
changes in the total flow on several arcs. A model assuming a probabilistic distribution of user 
choices among a set of efficient paths fits better the traffic flows measured on the floor (Dial, 
1971; Crainic and Rousseau, 1986). The distribution of users could depend only on the 
generalized cost of the path (suitable combination of time and cost based on average values) or 
also on the overall traffic flow, to take into account delays due to the congestion on the arcs. The 
former assumption leads to a simpler and easier to use model (each O/D pair can be analyzed 
separately), whereas the latter leads to an equilibrium model which is more accurate but difficult 
to manage, often unstable and strongly dependent on the time schedule of the users on the network 
(congestion is not, in general, an aspect that can be calculated on the basis of average traffic, but 
requires peak time analyses) (Smith, 1979 and 1983; Patriksson, 1991). An interesting 
compromise between the two approaches could be based on decomposition techniques (Safwat 
and Magnanti, 1988; Larsson and Patriksson, 1992). In this paper we shall use, for the road 
network, the following: 
• The overall road traffic is divided into: 

- road traffic for rail transportation 
- long distance commercial traffic 
- short distance commercial traffic 
- long distance passengers traffic 
- short distance passengers traffic. 
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• Such components are considered in a given sequence and for each component the network 
parameters are evaluated on the ground of the workload assignment of the previous 
components. 

• Each component, but the last one, is assigned to the network on the basis of generalized cost 
for distributing the users among a set of feasible paths, which does not depend on the overall 
traffic. 

• The last component is assigned on the ground of an equilibrium model, taking into account the 
overall traffic flow and a suitable set of feasible paths. 

In particular, if the different sets of feasible paths are generated via the PATHCOMP procedure 
for problem road, described earlier the resulting paths of each SPF(o,d) have roughly the same 
generalized cost and they do not overlap too much. These features make the use of logit models 
particularly attractive. 

Some critical points remain: the partition of users between the different modes (modal split 
between train and road); the choice of road flow components. 

Freight traffic on a rail network 
The rail network transport model takes into account lines, ie services on the infrastructure network 
available for passengers, and road access/exit paths (Aashtiani, 1972). A line is a sequence of rail 
stations connected by rail subpaths. In this case a multicommodity flow model would produce, at 
the same time, all O/D paths carrying positive flows and the corresponding flows. If one restricts 
the set of O/D paths to the set of feasible paths generated via the PATHCOMP procedure for 
problem rail, described earlier, the resulting multicommodity model produces more realistic path 
flows. Moreover, in spite of the larger number of variables (path flows), the problem has a special 
structure which makes it amenable to efficient algorithms (Ahuja et al., 1993). 

Viable paths 
We have already defined viable paths. We will now consider some traffic assignment problems on 
a bimodal network, when only viable O/D paths are allowed. There are 5 different types of viable 
paths, as shown in Figure 2. 

Figure 2 	The 5 types of viable path 

The simplest model to be considered is a deterministic user equilibrium one. Under the assumption 
of no congestion it is well known (Beckmann et al., 1956) that the solution to this model has an 
all-or-nothing pattern: the whole flow from any origin o to any destination d is conveyed along the 
shortest viable path. 
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Interestingly, finding shortest viable paths for all O/D pairs is of the same order of complexity as 
finding ordinary shortest paths for all O/D pairs. To see this, let G = (N,A) be a bimodal directed 
network, where A = AroadUArail> Aroad is the set of all road-arcs, Arai'  is the set of all rail-arcs. 
Define, for all k, he N , 
road(k,h) 	= length of a shortest road path from k to h 
rail(k,h) 	= 	i4 	rail 
roadrail(k,h) 	= 	 road-rail 	" 

railroad(k,h) 	= 	4C 	rail-road 	" 
roadrailroad(k,h) = 	4, road-rail-road " 

viable(k,h) 	= 	44 	viable 

Proposition 1 

One can compute viable(o,d), for all (o,d)E P, in O(pn2) time, that is, with the same order of 
complexity as computing the lengths road(o,d), rail(o,d) of the ordinary single-mode shortest paths 
from o to d, for all (o,d)E P. 

Proof: One has 

roadrail(o,d) 	= min {road(o,h) + rail(h,d) } 
hEN 

railroad(o,d) 	= Iriiri { rail(o,h) + road(h,d) } 
he N 

roadrailroad(o,d) 	= riliri {roadrail(o,h) + road(h,d)} 
ha N 

viable(o,d) 	= min 
I road(o,d), rail(o,d), roadrail(o,d), ) 
Ì railroad(o,d), roadrailroad(o,d) 

Clearly road(o,d) and rail(o,d), for all (o,d)E P, can be computed in O(pn2) by an ordinary shortest 

path algorithm. In view of (1), roadrail(o,d), railroad(o,d) and roadrailroad(o,d), for all (o,d)E P, 
can be computed in extra O(pn) time starting from road(.,.) and rail(.,.). Finally, the function 
viable(o,d), for all(o,d)E P, can be computed in 0(p) time starting from the previous five functions 
road(.,.), ... , roadrailroad(.,.). Hence the proposition follows.II 

Note: In actual computations, the set N in (1) may be replaced by a suitable N.  c N without loss 
of optimality. 

Alternatively, probabilistic assignment procedures (eg a logit model) can be employed. When 
congestion phenomena cannot be ignored, stochastic user equilibrium (SUE) models can be used. 
In all such cases, for each O/D pair (o,d) a small set SFP(o,d) of viable paths is generated. This 
can be accomplished by a variant of the PATHCOMP procedure for problem road with an ad hoc 
composition rule at each intermediate node i E I(o,d) , so as to ensure that only viable paths are 
produced. 

A BILEVEL NETWORK DESIGN MODEL 

General remarks 

The design phase involves several aspects. The infrastructure network design problem, in its 
simplest form, deals with the assignment of arc capacities, within a given budget, in order to 

(1) 
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maximize the overall system effectiveness. This leads to a bilevel decision problem, where the 
first level assigns the capacities and the second one assigns the flows, with two different objective 
functions: overall system effectiveness versus choice of user-efficient paths. 

Other decision problems deal with line design problems, commercial traffic routing, the 
integration of different traffic flows, the integration of different transportation modes for the same 
stream of traffic, and so on. All these problems require O/D path computations where path 
composition, with a suitable definition of the SPF's, is a basic tool. 

The choice of investment strategies, on a given set of network arcs, which minimize average 
travelling time has been analyzed by several authors (Dionne and Florian, 1979; Florian, 1986; Le 
Blanc and Boyce, 1986; Leurent, 1993) for both road and rail networks, with joint assignment of 
capacity and flows (Crainic and Rousseau, 1986; Winter, 1989; Patriksson 1990). 

In the present section we shall describe a network design model embodying the notion of viable 
paths described in previous sections. 

Given the bimodal road-rail network G = (N,A) defined earlier, we shall assume that investments 
are allowable on a subset of arcs Q = QroadUQrail, where QroadÇAroad, Qraii Arai1. For each arc 

j E Q, nj investment alternatives may be considered, from which one, and only one, alternative 

must be chosen. We shall assume that, for each j E Q, alternative 1 corresponds to the null 
investment. 

For each j E Q, and for each investment alternative on j, investment costs 

0 = c(j,l) < ... < c(j,k) < ... < c(j,nj) 

with corresponding arc transit times 

t(j,l) > t(j,2) > ... > t(j,k) > ... > t(j,nj) 

are known. 

Let q = IQI. Let r = n 1 + ... + nq be the total number of alternatives and let B = {0,l}. 

An investment plan can be identified by a binary vector 

y=fy(l,1),...,y(1,n1); y(2,l),..., y(2n2);...; y(q,1)),..., y(q,nq)] E Br 

satisfying the multiple-choice constraints 

n1 
y(j,k) = 1 	Vi E A, 	 (2) 

k=1 

where y(j,k) = 1 if the k-th investment alternative is chosen on arc j, and y(j,k) = 0 otherwise 
~j E Q,k = 1,...,nj 

Let Y = (y E Br: y satisfies (2)) be the set of all investment plans. Let b be the total budget 

available for investments. For each O/D pair (o,d)E P, let the demand D(o,d) be known. The 
demand D(o,d) is equal to the estimated total number of users travelling from o to d along the arcs 
of the bimodal network G. We assume that the demand is rigid, that is, it does not depend on 
network upgrading. Furthermore, we shall assume that all users choose only viable paths and that 
there is no congestion: travelling times are independent of user flows. 

Given an investment plan y E Y, for each (o,d)E P let T(o,d;y) be the minimum travelling time (or 
generalized cost) along viable paths from o to d, conditional on the investment plan y. 
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For each j E Q, due to the multiple-choice constraints (2), there will be a unique k such that 
y(j,k)=1. Then the transit time on arc j will be given by t(j,k). 

The mathematical formulation of the model is the following: 

Constraints 

ni 	 ni  
Multiple choice: I  y(j,k) = 1, j E Q; 	Budget: I E 	c(j,k)y(j,k) = 1, 5 b 

k=1 	 ieQ k=1 

Binary variables: 	y(j,k) E (0,1) j E Q; k = 1,... ,nj . 

Objective Function 

User total transportation time: 	D(o,d)T(o,d;y). 
(o,d)E P 

The above model is a bilevel optimization one. At the lower level, for any given feasible 
investment plan y one computes T(o,d;y) for all (o,d)E P. This is a traffic assignment problem 
along viable paths, which can be solved by one of the methods outlined earlier. At the upper level, 
one minimizes the total travelling time (or the total generalized cost): 

F(y) = 	D(o,d)T(o,d;y) 
(o,d)E P 

over all feasible investment plans y. 

Derivatives and penalties 

In order to describe heuristics for the upper level of the network design model discussed in the 
previous subsection, we need to introduce some definitions and notation. For simplicity, we 
assume that at the upper level the objective function is the total travelling time. The generalized 
cost case can be carried out with minor changes. 

Suppose that the investment alternative k is chosen on arc j E Q. If the alternative k+1 
(upgrading) or k-1 (downgrading) is preferred, the total travelling time, as well as the investment 
cost and the transit time on arc j will accordingly change. 

In order to quantify these changes, consider any given y e Y. Let us associate with y, for each j E 
Q, two modified investment plans y and y as follows. 

There is a unique k such that y(j,k) = 1. Define y to be the vector whose components are: 

y(;,k)=0  

y(j,k+1)=1 

316 ,10 = y(j ,k), 	(j',k)#(j,k) or (j,k + 1) 

Symmetrically, define y to be the vector with components 

y(j,k) = 0 
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y(j,k - 1) = 1 

yj(j ,k) = y(j ,k.), 	(j',k)~(j,k) or (j,k - 1) 

Notice that yr is undefined when k = nj and that yj is undefined when k=1. 

When the investment plan changes from y to yr [to y] we shall say that arc j is upgraded 
[downgraded]. 

Accordingly, one can define (boolean) derivatives of the total travelling time, of the investment 
cost on arc j, and of the transit time along arc j as displayed in Table 1. 

Table 1 	Travelling time, transit time and investment cost 

Arc j downgraded 	 Arc j upgraded 
Total travelling time 

Arc transit time 

Arc investment cost 

.64(y) = F(y) - F(y) ? 0 	Aj (y) = F(yr) - F(y) < 0 

q (y) = t(j,k - 1) - t(j,k) > 0 	ti+ (y) = t(j,k + 1) - t(j,k) < 0 

cf (y) =c(j,k- 1) -c(j,k)<0 	cjf (y) =c(j,k +1) -c(j,k)>0 

We shall also need a notion of up- and down-penalties. 

Let y n Y be a given investment plan. For j e Q, let Pj be the set of all O/D pairs (o,d) such that 
the shortest viable path from o to d conditional on y, (as computed earlier), includes arc j. 

The flow on arc j is then defined by 

tpj = 9j(y) = ~ D(o,d) 
(o,d)E PJ 

The up-penalty 7th is defined by 

7tj = 794-(y) = tj tpj 

Similarly, the down penalty ni is defined by 

(y) = tic') 

The use of the term "penalty" is justified by the following proposition. 

Proposition 2 

One has 

Aj (Y) Ttj 

Aj(Y) < 7C1 

Proof: Suppose that arc j is upgraded. Then the total travelling time will decrease by an amount 
7th (y) = tj1- ppj if no additional user chooses arc j after the upgrading, and by an even larger amount 
if some does. Similarly one proves (4),II 

(3)  

(4)  
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Two heuristics 
In this Section we are going to describe two heuristics for the upper optimization level of the 
above described network design model. 

The first heuristic (DROP/ADD) may be viewed as a generalization of heuristic MQKM in 
(Dionne and Florian, 1979). 

The DROP/ADD heuristic starts from the most expensive (infeasible) investment plan y0 with 
cost B0 (that is, y°(j,nj) = 1 for all j E Q) and consists of two phases. In the DROP phase, only 
one arc at a time is downgraded: this is the arc j for which the benefit-to-cost ratio Aj/cj is 
smallest. The DROP phase ends as soon as the current investment plan becomes feasible, ie, its 
cost B becomes <_b. If B<b, an ADD phase follows in which, at each step, the arc j with largest 
ratio A./c1 is upgraded, as long as the current cost remains within the budget b. Here is a formal 
description of this heuristic. 

Drop/add heuristic 
begin 
y:= most expensive (infeasible) investment plan 
B:= total cost of investment y 

DROP: Until B<_b 
for each arc j do 

if y(j,l) = 1 then p(j):= +oo 

else compute cj(y); compute (update) Aj (y); pj:=Aj (y)/cj(y); 
endif 
endfor 

let pj*mi pi; B:=B - cp(y); arc j* is downgraded; 

repeat 
ADD: 	While B<_ b 

for each arc j do 
if y(j,nj) = 1 then pj : = 0 

else compute cp(y); compute (update) Aj (y); pj:=Aj (y)/4 (y); 
endif 
endfor 

let pi*max pi; B:= B + c~*(y); arc j* is upgraded; Q  

endwhile 
end 

Note: 	Re-optimization techniques are used to update Aj (y) and Aj (y). 

Dionne and Florian's heuristic MQKM is but a special case of DROP/ADD when 
(i) there are only two alternatives, TO INVEST or NOT TO INVEST, for each arc; 
(ii) the investment cost on each arc is proportional to the arc length; 
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(iii) the network is single-mode, and ordinary shortest O/D paths are considered (notice that they 
are viable by definition). 

The above DROP/ADD heuristic has a greedy nature: arc downgrading decisions in the DROP 
phase and arc upgrading decisions in the ADD one are made sequentially, and once they have 
been made, there is no possibility to change them at a later stage. In order to alleviate this 
difficulty, we introduce a new heuristic where these decisions are made more globally. This 
heuristic starts in the same way and has the same overall structure as the first heuristic. The key 
difference is that, at each iteration, several arcs are downgraded or upgraded rather than a single 
arc. 

At each iteration of the DROP phase, one finds the current set of arcs to be downgraded by solving 
a binary knapsack problem, whose variables xj, j E Q, are defined as follows: xj = 1 if arc j is 
downgraded, else xj = O. The objective function, to be minimized, is the total down-penalty: this is 
an upper bound on the total decrease of travelling time in view of Proposition 2. The knapsack 
constraint ensures that the total saving is at least R: the amount R may change from one iteration 
to another and is chosen so as to be neither too small nor too large. On one hand, R should not 
exceed a fixed fraction s of the gap between the initial cost B0 and the available budget b; on the 
other hand, R should not exceed a fixed fraction r of the current maximum possible saving C (ie 
the saving when all arcs are downgraded). Actually, one sets R = (6(B0 - b), pC}. The two 
parameters p and 6 are chosen by the user and must be calibrated in advance. Along similar lines, 
in the ADD phase one solves a single knapsack problem to "fill-up" the budget by upgrading a 
suitable set of arcs. A formal description of the second heuristic follows. 

Penalty knapsack heuristic 

begin 

y:= most expensive (infeasible) plan; B0:= total cost of investment y; B:= B0; 
DROP: Until B <_ b 

compute total travelling cost z(y) = 	D(o,d)T(o,d,y) 
(o,d)e P 

for each j E Q compute flowcpj; H:= Q; 

for each j E Q 
if y(j,l) = 1 then H:=-{j} 

else compute 	= cpi,tj ; 

endif 
endfor 

C:= 	cj; 
je H 

(C is the maximum possible current saving, ie all arcs are downgraded} 
R:= min { pC, a(B0-b) } ; { p and a are two user-defined parameters} 
Solve the linear binary knapsack problem: 

min / 7tixj s.t. y cjxj>_R; xi. 0 or 1, jE H 
jell 	jeH 

let x* be an optimal solution: 

all arcs j such that xj are downgraded; 
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B:= B - 	Cjx~ ; 
jE H 

repeat 
ADD: 	Compute z(y); 

for each j E Q compute flow (pi; 

H:= Q; 

for•each arc j E Q 
if y(j,nj) = 1 then H:=H-{j} 

else compute fif (y),ci+ (y);7tij = (pj,tj+; 
endif 
endfor 
Solve the linear binary knapsack problem: 

mini 7cß xj s.t. 	cpxjS-b-B; xj = 0 or 1, jE H 
jEH 	jEH 

let x* be an optimal solution: 

all arcs j such that 4 are upgraded; 

end 

Our last result yields an upper bound on the total number of knapsack problems to be solved 
during the execution of the heuristic. 

Let smin = min {c(j,k)-c(k-1,j):j=1,...,q;k=2,...,ni) be the smallest possible saving obtainable 
by single-arc downgrading. 

Proposition 3 

The total number v of knapsack problems to be solved satisfies the inequality: 

v5 1/min{a Psmin + 1. 	 (5) 
L 	(B0-b) 

Furthermore, if at the end of the DROP phase non-null investments are made on all arcs of Q, then 
the above inequality can be strengthened into 

v<_ 1/min6,gPsmin  

~I
+ 1. ll (Bo-b) J (6) 

Proof 

Within the DROP phase, each iteration results in a saving of at least R. 
Since R = min{cs(Bo-b), PC} and since 

C>smin , 	 (7) 

the saving at each iteration is at least {6(B0-b),Psmin}. On the other hand, the gap between the 
initial cost B0 and the actual budget is(30-b) . It follows that after at most 

[min{6Bp b 
	min 6 Psmin 

(BO-b), Psmin} ~ 	` (B0-b) 
t

' , 
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iterations, the current cost B becomes <_b and then the DROP phase must stop. Since a single 
knapsack problem must be solved in the ADD phase, the inequality (5) follows. If at the end of the 
DROP phase the investment on every arc of Q is non-null, at each iteration inequality (7) can be 
strengthened into C>_gsr„in  

Reasoning as above, one obtains (6). II 

Although inequality (5) is somewhat crude, one can use it to control v by properly adjusting the 
two parameters p and a. As expected, the larger are p and a., the smaller is v. 
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