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Abstract 

Route choice behaviour of familiar and unfamiliar drivers is explored 
and compared. The results obtained indicate larger homogeneity 
among the unfamiliar drivers in terms of their switching and diverting 
behaviour, while familiar drivers demonstrate larger taste and 
preferences variations. Two choice models are implemented and 
compared: the approximate reasoning model, and a multinomial logit 
model. 
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INTRODUCTION 

Modeling route choice behavior is not an easy task. It gets even more complicated when traffic 
information is available to drivers. Not only all the attributes related to the information (such as 
type, context, spatial and temporal relevance) have to be considered, but other factors, such as 
information processing capabilities, perceived reliability, and information integration have to be 
taken into account as well. Furthermore, existence of on-line traffic information forces decisions 
to be made in real-time, often under time pressure, and while the driver is primarily occupied with 
the driving task. 

Many factors affect route choice behavior. Bovy and Stern (1990) categorized them into four 
major groups: 
• Route attributes which relate to road characteristics, traffic conditions, and environmental 

considerations. 
• Personal characteristics of the driver. 
• Trip characteristics such as trip purpose, mode, etc. 
• Other circumstances such as weather conditions, time of day, and traffic information. 

In this paper we focus on familiarity and its effects on route choice behavior. Familiarity is a 
compound factor, and can not be easily categorized into one of the above four groups. Although 
naturally belonging to the category of personal characteristics, familiarity is not independent of 
route and trip characteristics. Drivers can be familiar with certain routes during certain times, for 
specific purposes, and under given circumstances, and at the same time be unfamiliar with the 
same routes during different times, for other trip purposes, and different circumstances. Thus 
familiarity encompasses interactions of personal characteristics with route and trip attributes. 

Familiarity has many viewpoint in the context of route choice behavior in the presence of 
information, and can be roughly divided into the following two groups: 
• familiarity with the network 
• familiarity with the information system 

Familiarity with the network, as illustrated in Figure 1, pertains on the static level to knowledge of 
the network structure and infrastructure and includes knowledge of routes in the network, type of 
roads, and available facilities. More dynamic familiarity with the network includes knowledge of 
traffic conditions and network performance (eg traffic composition and density, traffic flows, and 
travel speeds). And, of course, the utmost level of familiarity is achieved by actual experience, 
which combines static and dynamic knowledge. Other dimensions of network familiarity can be 
characterized according to spatial, temporal, trip-type, and other external factors (such as weather, 
time-of-day, etc). Familiarity with the information system pertains to knowledge of its potential 
features and operating routines, to previous experience and interaction with the system, and more 
conceptually, to its perceived reliability and to the interpretation of the information received. 

NETWORK 	 INFORMATION SYSTEM 

personal experience 

dynamic knowledge 

( no knowledge 

Figure 1 	Levels of familiarity 
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There are important interactions between the two types of familiarities, influenced by the specific 
type of information provided. Information systems can, for example, change the knowledge of the 
available routes in the network by informing drivers about route blockages, or alternatively by 
suggesting alternatives that were not previously considered. Similarly, information systems might 
change the dynamic knowledge of the network by providing updated information on traffic 
volumes, current delays, and expected bottlenecks. 

The importance of familiarity on modeling route choice behavior in the presence of information 
has been lately recognized by several researchers. Adler and McNally (1994) investigated effects 
of familiarity on route choice behavior using the FASTCARS driving simulator. Their results 
indicate a significant influence of familiarity on drivers behavior and performance. Bonsall (1995) 
investigated the role of variable message signs on route choice decisions using the VLADIMIR 
driving simulator, and his results suggest that increased familiarity brings greater rationality and 
consistency to choices. 

In this paper effects of network familiarity on route choice behavior are explored and investigated 
using a driver simulator. The level of network familiarity is controlled by the design of the 
experiment, and two extremes participate in the study: very familiar subjects with extensive 
personal experience with the network, and completely unfamiliar subjects who have never been to 
the area of the network. 

THE EXPERIMENT 

A driving simulator was used to compare route choice behavior of familiar and unfamiliar drivers. 
The familiarity aspect that was controlled for was knowledge of the alternatives in the choice set, 
and actual experience with the use of the network. The choice scenario that was simulated referred 
to commuting behavior from south-west Newton Massachusetts to M.I.T. in Cambridge 
Massachusetts, USA. The simplified network appears in Figure 2 and includes three major 
alternatives connecting the origin, marked by "HOME", with M.I.T., the destination node: Beacon 
Street, Commonwealth Avenue, and The Massachusetts TurnPike. 

MIT 

HOME 

Figure 2 The Newton network 

The sample included familiar and unfamiliar drivers. The familiar sample population consisted of 
10 subjects who were very familiar with the network, and were actually living in the close 
neighborhood of the "HOME" node and were commuting regularly to M.I.T. During a preliminary 
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interview, the choice-set of each subject was identified, and the alternatives that the subject 
actually knew and used were associated with the given alternatives in the simulated network. In 
addition, subjects were asked to give travel times estimates on the three alternatives in the choice-
set. The unfamiliar sample population consisted of 15 subjects taken from the Brussels 
metropolitan area in Belgium (all University associated), that have never been to Newton and 
Cambridge, Massachusetts. During the preliminary interview a map of the commuting corridor 
was shown to the subjects, and the three alternatives were identified on the map. The subjects 
were asked to provide travel time estimates on the three alternatives. Thus, the unfamiliar drivers 
were given static information about the network, however they lacked dynamic knowledge and 
personal experience. Both the familiar and unfamiliar drivers did not have any prior experience 
with the information system, and were given detailed information about its features and operating 
instructions. Each subject performed a total of 22 trips from the "HOME" node to M.I.T. The first 
two trips were considered to be practice trips. 

A driver simulator (Koutsopoulos et al. 1994) was used for data collection. The driving 
environment (as illustrated in Figure 3) is simulated by two main windows: the 
driving/observation window (on the left of the screen) and the information window (on its right). 
The driving/observation window corresponds to the driving task itself and is dynamic in nature; at 
each intersection the driver has to make a choice on the next link to follow. The information 
window communicates information on traffic conditions, which at the current experiment included 
link congestion level, and accidents indication. Traffic conditions on links were indicated by 
colors, where each color corresponded to one of the following labels: bumper-to-bumper, heavy 
traffic, usual traffic, light traffic, or free flow. Accidents were indicated on the network map 
according to their occurrence. Traffic scenarios for the 20 trips varied randomly according 
congestion levels, accidents occurrences, and information availability. 

Figure 3 	Driving simulator 
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OBSERVED BEHAVIOR OF FAMILIAR AMID UNFAMILIAR DRIVERS 

Decisions made at the origin 

In each trip drivers had to make a choice decision at the "HOME" node on which alternative out 
of the available three to choose (Beacon Street, Commonwealth Avenue, or The Massachusetts 
TurnPike). The distributions of choices made at the origin among the three alternatives for the two 
populations are presented in Figure 4. It is clear that the unfamiliar sample population has a more 
uniform distribution among the three alternatives while the familiar sample population shows a 
clear preference for the Beacon street alternative over the Mass. Pike, supporting the existence of a 
"favorite" or "usual" path among the experienced users. This phenomenon can be seen even more 
distinctly in Figure 5, which illustrates a breakdown of choices by subjects. It can be seen that 
whereas each of the unfamiliar drivers experimented with each of the three alternatives, the 
familiar drivers show a clear tendency to have a route that is more preferable on the others, and 
four of them have not chosen the Mass. Pike. alternative even once. This observation holds true 
even without looking at the specific traffic conditions, which were generally worse than usual, 
thus having the potential to cause even the experienced drivers to change their usual behavioral 
pattern. 

Familiar drivers 
	 Unfamiliar drivers 

Beacon St 
45%  

Comm. Ave 
36% 

Beacon St 
34%  

Comm. Ave 
29% 

Mass. Me 	 Mass. Pike 
19% 	 37% 

Figure 4 	Choice distribution at the origin 
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Figure 5 	Choices made at the origin 
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Day-to-day variability 

Day-to-day variability corresponds to the temporal aspect of the sequence of choices. A choice is 
considered to be a "switch" if it differs from the previous choice made at the same decision point. 
Figure 6 presents the distribution of route switching among familiar and unfamiliar drivers 
concerning choices made at the origin, (the subjects in the Figure are sorted according to 
ascending number of switches). 

Clearly, the unfamiliar drivers performed more switches than the familiar drivers, and their 
average number of switches was significantly larger. This phenomenon can be explained by the 
learning and experimenting nature of the behavior of the unfamiliar drivers; whereas familiar 
drivers are more likely to stick to their previous choice, unfamiliar drivers keep searching for 
better choices, since they can not easily evaluate how good their choice was. It is important to 
recall that switching behavior is also related to the specific traffic conditions encountered which 
were not accounted for in Figure 6, however, the sequences of traffic scenarios for all subjects 
(familiar and unfamiliar) were sampled from the same distributions, thus we can conclude that 
indeed there is a difference in the day-to-day variability of the two sample populations. 

-~— familiar drivers 	unfamiliar drivers 

Figure 6 	Route switching behavior 

Another interesting phenomenon apparent from the switching behavior is the variances of 
switching behavior within each group; the unfamiliar population is more homogeneous in terms of 
their switching behavior (they all switch a lot), while the familiar population demonstrates larger 
variance of number of switches among its members. The above observed phenomenon can be 
explained by the differences in levels of familiarity: the unfamiliar drivers have limited static 
knowledge on the network and start with no dynamic knowledge, hence they investigate the 
dynamic performance of all the alternatives in the network. The experienced drivers, on the other 
hand, have well-established dynamic knowledge, and hence act according to their personal 
judgements and preferences and therefore demonstrate larger variability in their behavior. 

Diversion behavior 

Diversion is defined as a change of planned route, where the planned route is determined by the 
choice made at the origin. Diversions were possible only if Beacon Street or Commonwealth 
Avenue were chosen, and there were two possible diversion points on each: between nodes 2 and 
3, and nodes 4 and 5. Diversions were generally considered to prolong the duration of the trip (if 
not motivated by traffic conditions), thus it was expected that diversions occur only if there was a 
good enough traffic-oriented reason to divert. Figure 7 presents the distributions of diversions 
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among familiar and unfamiliar drivers, the subjects in the Figure are sorted in ascending number 
of diversions. Obviously familiar drivers diverted much more than unfamiliar drivers, with an 
average of 4.6 diversions for familiar drivers compared to 1.9 for the unfamiliar ones. A possible 
explanation is the relative conservatism of the unfamiliar drivers, and their efforts to gain dynamic 
knowledge of network performance. The unfamiliar drivers were learning the performance of the 
network on the three major alternatives. When diversions are allowed, then four more alternatives 
are added to the choice set (not counting routes with two diversions in each), forcing users to be 
able to process and remember more information. Hence, whereas experienced drivers showed 
more. flexibility to experiment with variations of their usual alternatives, inexperienced drivers 
demonstrated a more conservative approach in their choices. 
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Figure 7 	Diversion behaviour 

Safety and time scores 

Safety and time scores were presented to the users of the driving simulator after the completion of 
each trip. The safety score indicated how well the subject performed the driving task (simulated by 
the requirement to keep a randomly-moving ball within a car frame without hitting its edges). 
Both the familiar and unfamiliar drivers performed the driving task very well with an average 
safety scores of above 99%, exhibiting no significant difference between familiar and unfamiliar 
drivers. This observation was expected as both populations were unfamiliar with the use of the 
simulator, and all users managed to learn and master its operation quickly and efficiently. 

The time score presented to the users after each trip corresponded to: 

travel time on shortest path time score =travel  
travel time on chosen path 

and was computed based on the actual traffic conditions simulated during the trip. 

We want to emphasize here that users were not instructed to travel on the shortest path, rather 
were told to act as they usually do (the familiar population) and as they think they would have 
done (the unfamiliar population). Moreover, even if the goal of minimizing travel time had been 
conveyed to users, it would not have been easy to achieve as the simulator did not present exact 
travel time estimates, rather its corresponding color categories. 
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Surprisingly at first, the familiar drivers got a lower average time score of 88.7% compared to 
90.6% of the unfamiliar drivers, and the difference is statistically significant. However, a second 
thought reveals that whereas familiar drivers indeed acted according to their usual behavioral 
pattern (which does not necessarily minimize travel time), unfamiliar drivers, lacking such 
behavioral pattern, relied more on time scores and were trying harder to minimize travel time, 
since other preferences and personal tastes among the alternatives were not so obvious to them. 

MODELING ROUTE CHOICE BEHAVIOR OF THE TWO POPULATIONS 

Data obtained from the driver simulator includes three major groups of factors that influence route 
choice decisions: traffic conditions on the traveled link (as conveyed by congestion levels 
translated into the appropriate color category), traffic conditions on all the link of the network (as 
conveyed by colors through the information window), and accidents indication. Those three 
groups of factors are used to model route choice behavior of familiar and unfamiliar drivers. 

The ART model 

The Approximate Reasoning for Transportation (ART) model is based on linguistic rules which 
are used to describe attitudes towards choosing a specific alternative given (possibly vague) 
perceptions on system's attributes. The rules are used as anchoring schemes for decisions, while 
the adjustment of the rules to changing conditions is done by an approximate reasoning 
mechanism. The use of the fuzzy, approximate reasoning methodology, facilitates a flexible rule 
interpretation by automatically deriving rules that are close to the original rules. All the adjusted 
rules are then applied simultaneously (each with the appropriate degree) resulting in a final 
attractiveness of each alternative. The alternatives are then compared, and the most attractive 
alternative is chosen. The ART model is briefly described in the Appendix, and in more detail in 
Lotan and Koutsopoulos (1993). 

One of the advantages of the ART model is that it can accommodate fuzzy inputs, allowing for a 
more natural and intuitive modeling of perceptions relating to observations and to the received 
information. For modeling existing perceptions and information we use fuzzy sets modeled on the 
scale of possible travel times. The sets are trapezoidal-shaped fuzzy numbers (TrFN) and 
correspond to: "travel times experienced along a certain facility". A TrFN, K, is determined by 4 
points: k1, k2,13, and k4, and is characterized by having a range, [k2,k31, of very possible values 
(with membership degree of 1). A TrFN presentation is argued to be appropriate for modeling 
travel time perceptions since it is expected to have a range of travel times that are very possible, 
corresponding to travel times that occur under "usual" conditions. The existence of this range is 
the result of the fact that even under similar traffic conditions, different travel times realizations 
may occur, and thus more than one travel time gets a membership degree of one. The extreme 
points of the TrFN correspond to unusual conditions: k1  and k4  correspond to the shortest and the 
longest travel times respectively that are thought to be possible. 

The building blocks of the decision process are rules of the form: <if Ai then Be>, which associate 
the state of the system with choice-related attitudes and preferences. The use of rules resembles 
other rule-based systems in which decisions are related to specific input conditions (eg expert 
systems). However, the condition and the consequence part of the rules can include linguistic 
labels, and thus the rules become more general and intuitive, especially for modeling human 
thinking. There are three groups of rules for in the initial rule matrix which corresponds to 
decisions made at the origin. The first group pertains to observed traffic conditions on the three 
alternatives as observed from the observation window in the simulator, and translated into their 
travel time linguistic equivalents. The second group pertains to information concerning traffic 
conditions as received through the information window, and the last group deals with accidents 
and is of boolean nature: accidents either occur or not since in the simulator there is no indication 
of their severity. Consequently, the left-hand-side (LHS) of the rules relates to travel time 
perceptions as categorized into one of the following five fuzzy sets: 
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• VL - 	Very Low 
• L 	- 	Low 
• M 	- 	Medium 
• H 	- 	High 
• VH - 	Very High 

These underlying design sets do not correspond directly to perceptions, rather they serve as a 
conceptual basis for comparison. Rule consequences, as appear in the right-hand-side (RHS) of the 
rules, relate to attitudes and preferences towards choosing among the possible alternatives. The 
RHS values are measured on a scale ranging from -1 to 1, with -1 corresponding to the case of 
complete aversion towards choosing alternative j, 1 corresponding to the case of choosing 
alternative j without reservations, and 0 corresponding to the indifference point. Five fuzzy sets 
are used to represent driver's attitude towards choosing an alternative: 
• N 	 "I will Definitely Not choose this alternative", 
• PN 	- 	"I will Probably Not choose this alternative", 
• I 	- 	"I am Indifferent with respect to choosing that alternative", 
• PY 	"I will Probably choose this alternative", 
• Y 	- 	"I will Definitely choose this alternative". 

The initial rule matrix, is based on the most intuitive and common-sense rules resulting from the 
trivial mapping between the 5 LHS and RHS categories: 
• VL —> Y 
• L 	—> PY 
• M —> I 
• H 	—> PN 
• VH —> N 

The initial rules concerning accidents are again intuitive: <if there is an accident on path j then I 
will definitely not choose path j>. Thus the initial rule matrix contains 33 rules, 15 pertaining to 
observation (5 for each of the 3 alternatives), 15 to information, and 3 to accidents. 

A rule calibration procedure is implemented to update the initial rule matrix and allow for more 
complex rules such as rules corresponding to interactions among alternatives (eg <if travel time on 
path i is low then path i will probably be chosen and path j will definitely not be chosen>). Thus, 
the decision variables are the RHS entries of the rule matrix, which can take one of 5 possible 
outcomes (Y/PY/I/PN/N), or be left empty. Their initial values are determined by the trivial 
mapping above. The only constraint imposed on the RHS values is that the preference towards 
choosing a specific alternative satisfies weak monotonicity with respect to traffic conditions on 
that alternative. The improvement procedure for rule calibration is based on a heuristic which sorts 
the rules, picks "bad" rules, and improves them if possible by modifying the existing RHS entry 
and by trying to add RHS interactions. The sorting of rules is based on "rewarding" good rules 
(rules that supported correct choices) and "punishing" bad rules (which supported incorrect 
choices). 

Tables 1 and 2 summarize the results of implementing the approximate reasoning model for the 
familiar and unfamiliar populations. The entries in the tables correspond to the percentage of 
correctly explained choices where the initial fit is based on the initial rule matrix, and the 
improved fit on the calibrated rule matrix. 
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Table 1 	Performance of the approximate reasoning model for familiar drivers 
(% of correctly explained choices) 

Subject 1 2 3 4 5 6 7 8 9 10 Average 
Initial fit 	30 	95 	75 	45 	65 	25 	60 	60 	85 	80 	62 
Improved 70 95 80 45 80 95 100 90 85 80 82 

Table 2 	Performance of the approximate reasoning model for unfamiliar drivers 
(% of correctly explained choices) 

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg. 
Initial fit 45 60 65 50 50 70 55 50 55 35 60 70 55 30 60 54 
Improved 75 80 80 75 75 85 75 85 60 50 85 80 80 65 80 75.33 

The fit obtained for both populations for the initial (and trivial) rule matrix is surprisingly high, 
giving a strong motivation for the appropriateness of the rule-based ART model. The percentages 
of explained choices obtained for the unfamiliar population are in general smaller in magnitude 
than those obtained for the familiar population. The unfamiliar group has a significantly lower 
variance of explained choices among its members (both for the initial and the improved fit), 
exhibiting again more homogeneity than the familiar group. 

While the results of the initial fit of the models are global, in the sense that the same rule matrix 
was used for all the individuals, the improved results are disaggregate corresponding to individual 
calibrated rule matrices. Although disaggregate analysis is interesting for understanding individual 
behavior patterns, it has limited value from practical and predictive points of view. Hence an 
aggregate calibration was performed, trying to fit the same rule matrix to all individuals. The 
underlying assumption was that there exists a global rule matrix for all subjects and that individual 
differences are accounted for through the different perceptions which serve as inputs to the rules. 

Table 3 	Aggregate performance of the approximate reasoning model 

Initial fit (%) 	Improved fit (%) 

Familiar drivers 	 62 	 75 
Unfamiliar drivers 	 54 	 60 

The results of the aggregate analysis, as appear in Table 3, are of course lower than the results of 
the disaggregate analysis. However, for the unfamiliar sample population, the difference between 
the disaggregate and aggregate improved fit is much bigger (about 20%) than the difference for 
the familiar sample population (less than 10%). This observation indicates more difficulty in 
trying to fit a single rule matrix to all the unfamiliar drivers, thus displaying less homogeneity 
among the unfamiliar drivers in terms of their specific decision rules. 

A random utility model implementation 

A random utility model (RUM) was used for modeling route choices of familiar and unfamiliar 
drivers. Following the simultaneous modeling approach, the following factors were included in the 
utility function: observations on traffic conditions (as seen through the observation window), 
received traffic information (as conveyed by the information window), and existence of accidents. 
Several observations collected by the simulator had to be omitted as they corresponded to trips in 
which information was not available. For each individual 4 out of the 20 trips were with no 
information, and hence for the familiar population a total of 160 observations was considered, and 
240 observations for the unfamiliar population. 

The following logit model was estimated: 
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Ui=ßO+RttXtt+ßinfXinf;+ßacc,Xacc; }Ei (2) 

where: Ui  is the utility associated with alternative i, Xtit  is the observed travel time on alternative i, 
Xinfi is the information regarding travel time on alternative i, Xacci  is a dummy variable which 
equals to 1 if there is information on an accident on path i, Ei  is the random error term, and ßi 's are 
the coefficients to be estimated. The crisp values for the input variables )(tit  and Xinfi were 
extracted from the relevant fuzzy sets (corresponding to colors representing perceptions on 
observed and received traffic conditions) using the mid-range of the flat of the TrFN. 

For the familiar Boston sample, estimation of a multinomial logit model for the utility function as 
specified in equation (2), resulted in a non-significant coefficient values for the observed travel 
time (Bit) and for accidents on Beacon street and on the Mass. Pike. (ßacct  and  ßacc3)•  Hence a 
reduced model with only 4 coefficients was estimated and the following results were obtained: 

Variable 	 Coefficient estimate 	t statistics 
Beacon - constant 	 0.78 	 3.09 
Comm Ave - constant 	0.69 	 2.66 
Traffic information 	 -0.17 	 -5.82 
Accident on Comm Ave 	-1.86 	 -1.71 

with p2  =0.17, and 65% of correctly predicted choices. It is interesting to note that observed 
traffic condition turned out to be not significant, and more surprisingly neither accidents on 
Beacon street and the Mass. Pike. The insignificance of the accidents might be related to their rare 
occurrences (there were 13 indicated accidents on Beacon Street and only 4 on the Mass. Pike). 
Consequently, the most important factors attributing to the route choice decisions turned out to be 
the constants corresponding to inherent preferences with respect to the alternatives (that are 
unrelated to the actual traffic conditions occurred), and the information conveyed through the 
information window regarding traffic congestion levels. For the unfamiliar Brussels sample 
population, the only significant coefficient turned out to be ßinf  which is associated with the 
received information. 

Variable 	 Coefficient estimate 	t statistics 
Traffic information 	 -1.469 	 -7.296 

with p2= 0.12, and 50.42% of correctly predicted choices. 

The results obtained reveal an intuitive difference between the two populations: whereas the 
familiar drivers have inherent preferences towards the alternatives (represented by the constants of 
the utility functions), the unfamiliar drivers have no such a priori preferences and their main and 
only significant factor is the information received. The sample reconstruction performance of the 
ART model was better than that of the random utility model. 

CONCLUSION 

Several aspects of familiarity were discussed in the context of making route choice decisions in 
the presence of traffic information. A small case study was used to investigate effects of 
familiarity on route choice behavior. Data was collected using driver simulator from two groups of 
users: a familiar group that had extensive previous use with the network under consideration, and 
an unfamiliar group that had absolutely no previous experience. Both groups were unfamiliar with 
the information system. 

The observed behavior of the two groups differed in several aspects; the unfamiliar group 
exhibited more uniform distribution of choices, while the familiar group showed clear preference 
among the alternatives. Furthermore, the unfamiliar group switched a lot from day-to-day while 
the familiar drivers showed a tendency to stick to their previous choice. On the other hand, the 
familiar group demonstrated larger flexibility in their diversion behavior en-route, while the 
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unfamiliar drivers turned out to be less daring and more conservative. Both groups did very well in 
terms of performing the act corresponding to the driving task, however the unfamiliar drivers did 
better in terms of achieving high time-scores although the goal of minimizing travel time was not 
specified. This phenomenon was explained by the lack of inherent preferences among the 
alternatives for the unfamiliar drivers, which caused them to try and reach the unspecified goal of 
traveling on the shortest path. 

Two models were implemented: the ART model and a logit model. Both models provided 
interesting insights into the choice behavior of the two groups. However, for the presented case 
study, the ART model outperformed the logit model terms of percentages of explained choices. It 
also had the advantage of being able to handle missing data (corresponding to trips without 
information). 
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APPENDIX: THE APPROXIMATE REASONING MODEL 

Each rule has the form: if Ai  then Bi, and associates the state of the system Ai, with choice-related 
attitudes and preferences Bi. In general Ai  and Bi  are multi-dimensional vectors defined as: 

Ai = (Ai1,...,Aim) 	i=1,...,N 

Bi = (Bi  1  ,...,Bim) 	i=1,...,N 

where m is the number of alternatives in the choice set. Ad is the j'th component of the left-hand-
side (LHS) of the i'th rule and corresponds to the state of alternative j. Correspondingly, B1i relates 
to the attractiveness of choosing alternative j in view of the information conveyed by the vector 
Ai . While the LHS characterizes a given performance measure according to fuzzy labels, the right-
hand-side (RHS) of the rules corresponds to aspects of the final decision. It serves as an 
intermediate step in the decision process and corresponds to the stage at which attractiveness of 
each alternative is evaluated based on the input. The multi-dimensionality of the RHS 
representation captures the fact that even if the LHS of a rule relates to a specific alternative j, it 
could also affect perceptions of the attractiveness of another alternative k. 

A single rule i execution is based on ai, the degree of overlap between the LHS of the i'th rule, Ai, 
and the relevant input A*. It serves as the degree with which the i'th rule is being "fired" or 
executed, and is given by: 

aimaxxmin(µA.(x), p.A(x)) 	 (Al) 

where pp() is the membership function of the fuzzy set F. Based on the amount of overlap between 
A*  and Ai , the membership function of the attractiveness of a certain alternative j based on rule i, 
Bi  r, is derived. Using the correlation-product encoding scheme the membership function of the 
set B; * is given by: 

µB;*(Y)=ai*µB; (Y) 

It is clear that more than one rule can have ai>0, hence several rules can contribute to the final 
decision. All rules whose LHS have non-empty overlap with current inputs (ie rules i with ai>0), 
are being fired simultaneously, each with a different degree ai. For each alternative j, we combine 
the individual B *s over all the rules i into a score set Bi*which then corresponds to the 
attractiveness of alternative j and is given by: 

SBA'*(Y)=1 µe;*(Y) 	 (A3) 

Finally, the defuzzification phase translates the combined RHS's, Bi*, into a choice. As in most 
fuzzy control applications, a center-of-gravity based defuzzification scheme is used. Using 
equations A2 and A3, the center of gravity is given by: 

 

  

(A4) 
N 

 

i=1 

where ai  is the degree to which the i'th rule was fired, Vi  is the centroid of the fuzzy set 
corresponding to the RHS entry of rule i, and Si  is the area of this set (if Ei=iNaiSi=O then z is 
equal to 0). Finally the (crisp) centroids are compared using either deterministic or a random 
utility scheme resulting in a single chosen alternative. 

(A2) 
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