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Abstract 

In this paper we present the variational inequality formulation of the 
Ramsey price equilibrium, being a natural extension for nonlinear 
programming formulation to that problem, and a computation 
algorithm based on the sensitivity analysis for the restricted variational 
inequality. 
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INTRODUCTION 

Many models have been proposed so far to determine optimal transportation systems operations or 
strategic plans which take into account both supplier and user behavior. These include the network 
design problem [Dafermos (1968), Abduaal and LeBlanc (1979), Marcotte (1983), Sasaki and 
Asakura (1987), LeBlanc and Boyce (1986), Kim (1990), Friesz et al. (1990)1, the signal 
optimization problem [Tan et al. (1979), Marcotte (1983), Fisk (1986)], the traffic control problem 
on general traffic corridor systems (Yang and Yagar 1994) and the optimal pricing in transit 
systems (Kawakami and Mizokami 1985; Fisk 1986; Miyagi et al. 1992). These problems have the 
common structure of a hierarchical decision-making process: a single decision-making unit which 
may represent a supplier of transportation services or controlling agency tries to make optimal 
decisions with respect to the transportation system, which may restrict the feasible constraints set 
for user of that transportation system and influence user behavior or demands. Algebraically, the 
decision making problem mentioned above is typically described as the following bilevel 
programming problem or Stackelberg problem (eg Bard 1983; Shimizu 1982): 

[P] 

U) 	min. fi(x,y(x)), s.t. gi(x,y(x)) S 0 

where y(x) is defined as the solution for 

L) 	min f2(x,y),s.t. g2(x,y) <_ 0 

where f1, f2 are objective functions and gl, g2  constraint functions, respectively, in which decision 
variable vectors are x in U and y in L. U) is defined as a upper problem (or a leader, policy 
problem) and L) a lower problem (or a follower, behavioral problem) (see Candler and Townsley 
1983). In this paper we call [P] an applied network equilibrium analysis (or an ANE model) when 
the lower problem consists of user equilibrium models in transportation networks. 

Sensitivity analysis approaches have received significant attention in recent years as the most 
important method for developing solution algorithms for the bilevel programming problem with 
user-equilibrium constraints. The ANE model requires methods to approximate numerically a new 
equilibrium solution resulting from a change of decision variable vector in the upper problem. For 
this purpose, the sensitivity analysis for the restricted variational inequality problem developed by 
Tobin and Friesz (1988) is of special importance because it can provide the calculation of 
derivatives of decision variables and constraints multipliers with respect to perturbation 
parameters in the lower network equilibrium problem, thus, it enables us to provide the 
information associated with the derivatives of the objective function in the upper problem. Kim 
(1990) proposed a new approach to the optimal network design problem based on the nonlinear 
sensitivity analysis by Fiacco (1983). Friesz et al. (1990) applied the sensitivity analysis by Tobin 
and Friesz (1988) to the development of heuristic algorithm for the network design problem. Yang 
and Yagar (1994) also applied the sensitivity analysis for nonlinear programming to the 
integration problem of traffic assignment and traffic control on general traffic corridor systems. 
Kim in association with Suh (1990) provides almost a complete list for applications of bilevel 
programming approach and solution algorithms proposed so far. 

The main purpose of this paper is to provide a bilevel programming model for determining an 
optimal pricing in a transit system so as to maximize the social welfare compatible to user 
equilibrium on a multimodal network and to give a computational procedure for the bilevel 
programming model based on a perturbed variational inequality problem for the restricted 
problem. 

In our ANE model, the upper problem is defined as the maximization problem of the sum of 
consumer and producer surpluses where while the consumer surplus is defined by the expected 
maximum utility derived from the random utility theory, the producer surplus is given by the usual 
profit-maximization behavior subject to a break-even constraint. The provider for transit service is 
assumed to give different transportation services using common costs and to be able to give a 
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different price in each service. In this situation the Ramsey rule is directly applicable for 
determining the optimal price for each service in a sense that total surplus consisting of consumer 
surplus plus firm profit results in the smallest loss in surplus, compared with the "first best" 
pricing. An application of the Ramsey rule to transit pricing has been conducted by Train (1977) 
for AC transit and BART, however, a competition through pricing mechanism between transit and 
auto is not taken into account in this application. Ramsey pricing should be examined within the 
framework of the multimodal network equilibrium because there exists mutual interaction between 
each transportation service network with changing prices of each service and as well as travel time 
arising from the usage of road network. Thus, the lower problem in our ANE model must consist 
of the multimodal equilibrium problem. This type of ANE model was first proposed by Miyagi et 
al. (1992), in which a nonlinear optimization formulation for multimodal equilibrium is adopted, 
and is called a Ramsey price equilibrium problem. 

In this paper we present the variational inequality (VI) formulation of the Ramsey price 
equilibrium, being a natural extension of nonlinear programming formulation to that problem, and 
a computation algorithm based on the sensitivity analysis for the restricted variational inequality 
by Tobin and Friesz (1988). This paper considers a feasible direction method to solve the Ramsey 
price equilibrium formulated as a bilevel programming problem. The similar problem as the ANE 
model considered here is also studied by Fisk (1986). In Fisk's approach, however, the upper 
problem is formulated as a maximizing a profit of transit firm and a penalty function approach like 
Simizu and Aiyoshi (1981) is adopted for solving for bilevel programming problem. 

THE RAMSEY PRICING RULE FOR TRANSIT SYSTEMS 

If a multiproduct firm is a natural monopoly, then pricing goods at their marginal cost can result in 
the firm losing money. If the firm cannot be subsidized, for the firm to be sustainable, the firm 
must set prices sufficiently above marginal cost to break-even, that is, earn zero profit. In a one-
good situation, the requirement of zero profit is sufficient to set prices equal to average cost. 
However, with more than one good, many different price combinations result in zero profit. 
Ramsey (1927) first addressed this kind of problem in the context of optimal taxation and 
developed a method for determining the tax rates for various goods that would provide the 
government with sufficient revenue while reducing consumer surplus as little as possible. Because 
the break-even constraint prevents the imposition of a fully optimal, the so-called "first-best", 
marginal cost prices, we refer to prices which maximize total surplus subject to breaking even as 
"second-best" prices. Baumol and Bradford (1970) have pointed out that optimal taxation rules 
proposed by Ramsey are directly applicable for determining second-best prices for multiproduct 
natural monopolies. 

Possible situations where the Ramsey rule is applicable to the pricing of transit service are 
discussed here. 
(i) Most public transit providers are natural monopolies in that their marginal cost is below their 

average cost over the relevant range of output. 
(ii) A transit system operator usually provides more than two different services: two modes like 

bus and street car, different routes with various service frequencies. 
(iii) Since providers of transit services cannot be fully subsidized, they may have to bear the 

burden of covering the shortage of fixed costs. This implies that the first-best pricing would 
result in the providers facing negative profit and not able to continue to operate in the long 
run. 

(iv) A regional transportation agency must coordinate service among the various transit agencies 
and exercise considerable oversight of each agency's fare. From the social-welfare point of 
view, it may be justifiable for the regional transportation agency to adopt the total surplus 
maximization approach. 

Let us first confirm our attention to a simple pricing problem in which social welfare measured by 
total profits plus consumer surplus is maximized subject to a break even constraint. That is, as 
usual, it is assumed that profits are distributed among consumers. If the individual indirect utility 
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functions are linear in income with the same marginal utility of income, then the way profits are 
shared dose not affect the level of social welfare nor demands. Symbolically, the most efficient 
uniform second-best prices are given by 

[U0] max ni (p; q) = CS(p) + PS(p), s.t. PS(p) < K (1)  

where CS and PS represent consumer surplus and producer surplus, respectively, and K the money 
transfer from the government. Given a set of prices pE Rm = [p i , pi , • • pm] , where pi denotes a 
price for the service i and m represents the number of service, the consumer surplus can be written 
as the line integral 

f 

m 

CS(p) = 	~ qi(p) dpi 
;=1 

and the producer's surplus is given by 

PS(p) = 	Pigi(P) - T(gl(P), q2(P), • • •, qm(P)) 	 (3) 
;=1 

where q;(p) is demand function for service i and T(q) is the joint cost function of the transit firm. 
The corresponding conditions that the optimal solution should satisfy are: 

, J=1,2, . . .,m 	 (4) 

where MC; = 
	

is marginal cost of service i. From the integrability conditions for (2), 
aq; 

aqi a~ - api 
= 	(4) can be transformed as : ap; 	' 

~  
	6;i = 	= 

Pi 	a,+1 
where e j; is price elasticity of demand for service j with respect to the price of service i. To give 
some idea of how the Ramsey rule looks, let us consider the two service case. In that case, it 
follows from (5) that 

Pl-p Cl /
e11-621 ) + P2 p P2 -e 22) = 0 	(6) 

If cross-elasticity are zero, (6) is further simplified and results in the well-known Inverse Elasticity 
Rule, or IER, viz., 

Pl-MC1611 
+ P2-MC2  

P1 	P2 

BINARY MODE CHOICE / ASSIGNMENT MODEL 

To construct a model of hierarchical systems in general, behavior at the lowest level 
(transportation system users) is modeled first and higher levels are added in steps. Now we will 
show the behavioral model at the lower level in a bilevel system. 

(2)  

(5) 

(7) 
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The expanded network is represented by a directed graph G(N, A) where N is the set of nodes and 
A is the set of directed links. A subset of nodes serve as origins and/or destination for trips. The 
set of all origin / destinations (O/D) pair is designated by I. The network permits the flow of 
vehicles and transit passengers on links. The transit vehicles follow fixed itineraries. The nodes n, 
nE N, represent origins, destinations and intersections of links; the links a, aE A, represent the 
road and transit infrastructure of the urban area. Each link may be accessible to private and transit 
vehicles. The modes are designated by index m which is 1 for the automobile mode and 2 for the 
transit mode. The individual user cost cg' for travel by mode m on link a are given by well-defined 
functions of the link flow vector of both modes, vâ and vâ, but are separable by link as follows: 

cran = câ (va), m=1,2 where va  = (vi, vâ), aE A 	 (8) 

The user cost functions, ca(va)=[ca'(va),ca2(va)], are assumed to be monotone, continuous and 
differentiable: 

lCa(V a)-ea(V na)/T(V â v"a)>_0, ae A 

The origin to destination demands, q;" , iE I, for each mode m may use directed paths k, kE A;°1, 

where AT is the set of paths, (Am # 121), available for mode m and O/D pair i. The total origin to 

destination demands by both modes, q1E RIxI  and q2E RIxI  are given by a constant matrix 
,Tie  RIxI where for OD conservation equation is given as : 

q; + q? = q;, iE I 
	

(10) 

The flows on paths k, hk, satisfy conservation of flow and nonnegativity. 

hk=qm, iEI, m=1,2 and hk?) 
kE 

The conservation equations (10) and (11) can be described using OD pair-path incident matrix A 
as follows: 

Ah = q, h>_0 	 (12) 

where AE R2Ix1( (K = kl+k2) is defined by the OD pair-path incidence matrices 

Al  E Rk', A2E Rk2  by each mode 

A = 
Al 0  

_0A2  

and qe R21  is the OD trip vector represented solely by the auto trip demand: 

The link flows vra are given by 

vâ =  	Sak  hk, m = 1, 2, aE A 
1EI kE Am 

where 

oak _ ( 1 if link a belongs to path k 
0 otherwise 

(9) 
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Correspondence between link and path variables can be made using the link-path incidence matrix 
A. We have 

v =Ah 	 (13) 

The sets of feasible flow corresponding to link flow formulation and path flow formulation 
respectively are then defined as: 

S2' = [v: v = Ah, q = Ah, h >_ 0 ] 	 (14a) 

SZ _ [h: q = Ah, h >_ 0] 	 (14b) 

The cost of each path Ck(v) is the sum of the user costs of the links in the path 

Ck(v) = 	sakcâ (va), Ice Aim, iEI, m=1,2 	 (15) 
aEA 

or 

C(v) = ATc(v) 

Let ur(v) be the cost of the least cost path for all O/D pairs i and modes m 

ur(v) = min kEAm Ck(v), iE I, m=1,2 
	

(16) 

We now consider the case where a mode choice function Gi(w;) is a probabilistic choice function 
such as the logit model, that depends on the travel costs by the two modes via their difference w;, 
w;=u; (v)-u?(v). For each centroid pair, one can eliminate the transit demand using (10) and it is 
possible to derive a function G so that the auto demand can be obtained from q11 =q;G;(w;). It is 
assumed that Gi(w;) is a strictly decreasing function with inverse W;(q; /q;). Since q; is constant 
for a given i we refer to the inverse function as W;(q; ). 

The binary mode choice/assignment model is formulated by supposing that no traveler has the 
incentive to change mode 

u; -u?*  = IA/Kg?), iE I 	 (17a) 

and that for each mode the path choice satisfies Wardrop's user optimized behavioral principle 

Ck  - um
. =0 if hi:>0, kE A;", iE I, m=1,2 	 (17b) 

?0 if hk =0, 

subject to the feasibility constraints (14a). The notation (*) indicates equilibrium values of the 
flows, demands and O/D costs. The equilibrium conditions for the combined mode choice and 
assignment problem, (17) can be expressed as the VI: 

[LO] For path flow formulation, 

c(h*)T (h-h*) - W(q1 
T 

 (gt-q1.) ? 0, V(v, q)E S2 

and for link flow formulation, 	

I 

c(vIT (v-v*) - W(gt1T (gt-gI*) 0,  V(v,q)ES2' 
A mode choice function G;(w;),which satisfies rational assumptions about the behavior of travelers 
in choosing their mode, is a strictly decreasing function of w;. We assumed that this property 
holds, that is, 
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for w' w", (G(w') - G(w") )T (w'-w') < 0 	 (19) 

This implies that -G(w) is a strictly monotone mapping. We recall that the user cost functions were 
assumed to be monotone, as stated in (9). When the link user cost functions are strictly monotone 
and the mode choice functions are strictly decreasing functions of the difference in travel costs, 
the demands, link travel costs and O/D travel costs are unique. The verification of monotonicity 
conditions (19) is trivial for logit mode choice functions. Florian and Spiess (1983) shows that if 
câ(vd) = cd(vd) and câ(va) = câ(vâ), then the solution of (18b) is equivalent to 

[L0'] 

vi 	 rv 
Min.Z = ~ 	câ(x)dx + y 

J 	 o 

	

câ(x)dx - y 
	

W;(y)dy 
aEA ~ 	 aEA o 	 IEI  

subject to (14a). 

RAMSEY PRICE EQUILIBRIUM MODEL 

Transportation supplier at the upper level controls level of service characteristics and fares or 
rates. Userresponses to supplier decisions are included in the model as constraints to ensure that 
the solution is optimal after users have reached an equilibrium compatible with these decisions. In 
this paper only fare of each route of public transportation system is taken into account as a control 
parameter. Ramsey price equilibrium with logit demand function now can be described by the 
leader-follower problem considered by Stackelberg (1934), where while a leader determines prices 
of each route of transit mode by the Ramsey pricing rule given the share of each mode and 
network flows, a follower determines equilibrium flows given a set of prices. We first show the 
consumer surplus function corresponding the logit modal share function, then the formal 
mathematical structure for Ramsey price equilibrium problem for transit systems. 

Indirect utility function for logit model 
Suppose that there are m+1 commodities and q statistically identical and independent consumers. 
Commodity 0 is perfectly divisible and is taken as the numeraire. Commodities i = 1...m are the 
transportation services with prices pi ...pm and with quality indices ai...am. Each consumer has the 
same (real) income y and travels with any one of transportation services. Assume that 0 < pi < y, i 
=1...m, to ensure that each service can be afforded by all consumers. Furthermore assume that a 
consumer's conditional indirect utility from using service i is given by the additive form 

Vi=y-pi+a;+ Ei, i=i •• •m, 	 (21) 

where the ei are independent and identical double exponential variables. Providing the fixed total 
demand q is given, the expected demands are then given by 

4i=q 
exp{(ai-piY01  1=1...m 	 (22) 

-r 
eXp{(ai-pi y0] 

j=i 
Then, we obtain an explicit form for the indirect utility (consumer surplus) function of the 
representative consumer; 

(23) 

(20) 

V = Y + q0 ln 
 

0  exp(ai i  
I] 

where Y is the aggregate income of each consumer (Anderson et al. 1993). 
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Formulation 
We formulate Ramsey price equilibrium problem (RPEP) with the application of the binary 
choice/assignment model described in the previous section, but, with a slightly different way. 
Figure 1 shows the conceptual network configuration taken into consideration here. 

auto network 

Figure 1 	Multimode network representation for a single OD pair 

Mutual exclusive transit networks are assumed to handle a multimodal network equilibrium 
problem within the context of the binary modal choice formulation. While demand shares between 
private automobile and public transit systems are determined by logit modal split functions, 
demand for each public transit available is assumed to be determined as the path flow on each 
public all transit route with user equilibrium mechanism. The break-even constraints are imposed 
on transit routes. 

Algebraically, RPEP can be written as follows: 

U1) 

	

MaX.11 (h, p) = 0 / 	exp ( u;" }l 	I [pkhk - Tk(h(p))] 

	

ici 	m 	- 0 	iEI kEAi 

s.t.  	(pkhk - Tk(h(p))) < K 
iEI kEAZ 

Ll) (q,h) is the solution for the VI : 

c(h*}T (h-h*) W(qI }T(qI qI }> 0 V(v, q)E 

where um represent the generalized cost for traveling between OD pair iE I using private auto or 
public transit, being defined as u;" = 	+ bm tin' in which pim, tim , are prices and travel times of 
mode m (m = 1,2). Since pim for auto mode are assumed fired and constant, we treat only prices 
for transit modes and denote these Pk (because transit routes k correspond to transit modes in our 
formulation). 

Let (ql*, h*) be a solution vector to the VI[L1]. Then it follows by Theorem 1 in Tobin and Friesz 
(1988) that the necessary conditions for solving [L1] are: 

w(qI }-cp +Eµ =O (24a)  

C(h*)-X-ATµ =O (24b)  

cpTq* = 0 (24c)  

X
Th*  = 0 (24d)  
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Ah*  - q*  = 0 (24e)  

(24f)  

where ye RI, in Rki+k2  mn  R2I  are Lagrange multipliers and E is defined by unit matrix, e, 
with dimension I as E=[e -e]. The system of equation, however, does not meet the sufficient 
condition, as stated as Theorem 3 in Tobin and Friesz, for a local isolated minimizing point 
because of the non-uniqueness of the solution. 

SENSITIVITY ANALYSIS FOR THE RESTRICTED VARIATIONAL INEQUALITY 

If it is already known that a solution of nonlinear equation systems (24) exists and is uniquely 
determined, then a parametric optimal solution q* and Lagrange multiplier `F = [y, m, 1] may be 
represented by implicit functions h(p), g(p) as price vector being independent variable (Simizu 
1982). Then, RPEP can be furthermore simplified as: 

max. H (p, Ti(p)), 	s.t. PS (p, r)(p)) S K 	 (25) 

Thus, once the derivatives of the lower level is obtained with respect to the decision variables of 
the upper level, many algorithms for the standard nonlinear programming problem can be utilized 
to solve the ANE model in the previous section. For this purpose, the nonlinear sensitivity analysis 
is useful because that any parameter perturbation will generally results in the network equilibrium 
solution and that this type of sensitivity analysis requires the calculation of decision variables and 
constraint multipliers with respect to perturbation parameters (Fiacco 1983; Tobin and Friesz 
1988). The perturbed equilibrium network flow problem can be written as the following perturbed 
variational inequality (Tobin and Friesz 1988). 

L2) Find h*n W(e) such that 

C(h*, e1T  (h-h*) - W(q' 0%1-gl.) >_ 0 
	

(26) 

for all h, q, where 

S2(e) = [hl Ah = q(e), h >_0] 	 (27) 

and a is a vector of perturbation parameters. 

Since the path flows are not unique, this formulation will not satisfy Theorem 3 in Tobin and 
Friesz (1988), thus, derivatives of a solution h* with respect to the perturbation parameter do not 
exist. In order to resolve this problem, the approach taken in Tobin and Friesz is to select one 
particular path flow solution, in particular nondegenerate extreme point of the polytope defined as: 

F *(e) = [h I Vh = v*, Ah =g(e), h >_0 
Given the solution v*(0), the first step is to choose a unique path flow vector h* to associate with 
v*(0). The existence of unique path flow can be ensured by the flow decomposition principle 
(Ahuja, Magnanti and Orlin 1993) which may be described as that every nonnegative link flow 
can be represented as a path flow if every directed path with positive flow connects an origin node 
to a destination node. The only requirement in this choice is that h* be a nondegenerate extreme 
point of r*(o), that is, an extreme point solution h* included in the polyhedron I. 
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h2 
	

h3  

Figure 2 	Generation of extreme point solutions in the polyhedron S2 

A number of path generating methods can be used to generate h*. One way to find h* is to solve 
the linear programming problem in which v* serves as the vector of capacities (Tobin and Friesz 
1986; Ahuja et al. 1993). 

Because only positive path flows are considered, nonnegativity constraints will be nonbinding at 
the optimal solution and remain so for the perturbation parameter in a neighborhood of 0. Thus, 
the equilibrium conditions (24) reduces to 

-w0 (qt* 0 + Eµ = O (28a)  

C° (h*, 0) - A°Tµ = 0 (28b)  

A°h*  - q*(0) = 0 (28c)  

It can easily be seen that the columns of AT  are linearly independent and so µ is unique. Denote 
this unique vector as µ*. Therefore, the conditions for Theorem 4 are satisfied by the system (28), 
and so the derivatives of h°* with respect to e may be calculated. The Jacobian matrix of the 
system (28) with respect to (h°,11 ) and evaluated at E.= 0 is 

Jqo, h°, µ = 

-Vgw°(q*,o) 	0 	 E 

0 	VhC°(h*,o) 	A°T  

ET 	A° 	 0 

(29)  

The Jacobian matrix of the system (29) with respect to e and evaluated at zero is 

-Vew°(q*,0) 

Je = VEC°(h*,0) (30)  

_ 	-VEq(0) 	_ 
Therefore the gradient vector of solution at the lower level with respect to the perturbation is 
obtained as: 

= Jqô, h°  , µ.. Je 

Veq° 
VEh° 

VEµ 

(31)  
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(32)  

  

Veq 
Deh 

VER _ 

(33)  
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Suppose 

[Jq°, h°, µ] = 
A11 Al2 

[ A21 A22 

A11 = -Ow°(q*, 0), Al2 = [0 E] 

A21 = [0 ET]T 

OC°(h*, 0 ~ -A°T 
A22 = 

A° 	0 

[Jg°> h°, µ]
-1 = f B11 B12 

L B21 B22 

where 

B11 = A-111 + (Ai11 Al2)6-1 (A21

l

All) = A-111

B21 =-6-1 k21 

B12 =-(A11 Ai1)61, B22 = 

6= A22 - A21 (A11 Al2) 

Once the derivatives of decision variables with respect to the perturbation parameter, one can 
obtain the derivatives of objective function at the upper level can be calculated as follows: 

VII(p) = OpII (p,h) + [OgII(p,h),VhII(p,h), 0 

= VpII(p,h) + OhII(p,h) Deh 

Vg(p) = op g(p,h) + [Ogg(p,h),Ohg(p,h), 0 

= Opg(p,h) + Ohg(p,h) Deh 

Algorithm 
Since we have obtained the derivatives of the objective and constraint functions, we can now start 
to develop the algorithm for solving the reduced forms of RPEP (25). We adopt the feasible 
direction method originally developed by Zoutendijk (1960). In the following steps, we assume 
that the maximization problem is reformulated as the minimization problem with the objective 

function II (p, h) and constraint g (p, h) <_ O. 

where 

then 
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Step 1 	Choose the initial feasible point pE RIxk2  such that the corresponding lower level 
solution hl(pl) satisfy the break-even constraint. 

Step 2 	Calculate 

n(pi ) = n (pi,  hi ) 

and set k=1. 

Step 3 	Find the gradients of the objective and constraint functions, VII(pk),Vg(pk) , together 
with g(pl ) = g (pk, hk  ). 

Step 4 	Solve the following problem: 

min.: tl 

s.t. VII(p)y - 

g(p) = Vg(p) y Tls <0 

IyiI <_ 1  

where 	s = (1, 1, ....,1) 

Step 5 	If the optimal solution h* satisfies h* > wi for a predetermined positive constant w1, 
then the algorithm stops. Otherwise, go to the next step. 

Step 6 	Find an optimal step size ak by solving 

min.a  [II (pk +ayk) I g(pk  +ayk) <_ o] 

and provide the next feasible point as 

pk+l = pk +akyk 

Step 7 	Solve the lower problem, given pk+1  and find the solution hk+1  and the corresponding 
value of the objective function 

pj(pk+I) = n(pk+i hk+1 ) 

Step 8 
	

If for predetermined positive constants, w2 and w3, 
ry 

n(pk) _ n(pk+1) < 0)2 and pk+1 = pk < (03,  

then the algorithm terminates. Otherwise, set k=k+1 and return to Step 3. 

SUMMARY 

The conventional applications of the Ramsey rule to pricing of transportation services which have 
been discussed by economists are unrealistic and insufficient in a sense that network congestion 
effects on pricing have been neglected. In this paper we proposed a Ramsey price equilibrium 
model in which the Ramsey price rule is restructured within the framework of multimodal network 
equilibrium. We showed that if network congestion effects are taken into account, Ramsey price 
equilibrium model can be formulated as a bilevel programming problem and that if we can replace 
the follower-program with its necessary and sufficient conditions, Ramsey price equilibrium can 
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be transformed to the usual nonlinear programming problem so that many standard constrained 
optimization techniques can be applied. In this paper we adopt the feasible direction method and 
proposed an algorithm which combines the feasible direction method with the nonlinear sensitivity 
analysis. 

It should be noted that the break-even constraint depends on the amount of government subsidy or 
fixed costs and that the lower the government subsidy becomes the greater the second-best prices 
are. This implies that the Ramsey pricing rule may result in prohibitive prices in some cases which 
may have income effects. What is the desirable prices level can not be determined within the 
framework of the Ramsey pricing rule discussed here. However, if the upper level of prices are 
given in a significant way, the Ramsey equilibrium price approach may be possible to show the 
minimum level of the government subsidy to achieve welfare maximization. 
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