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Abstract 

This paper proposes an improvement of existing methods of origin-
destination matrix estimation by an explicit use of data describing the 
structure of the matrix. These data can be namely obtained from 
parking surveys. The new model is applied on both illustrative and 
real examples, and the results are discussed. Comparisons with the 
results obtained with SATURN/ME2 and the generalized least-squares 
method are also presented. 
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INTRODUCTION 

Among the many methodological problems faced by transportation planners, the question of 
determining the trip demand is one of the most delicate and pervasive. Indeed, in almost all 
practical applications of transportation modelling, the collection of origin/destination (OD) data is 
difficult, expensive and therefore very often incomplete. Exploiting all available and reasonably 
reliable data is hence crucial in this area of activity (see Ben Akiva, 1987). It is thus not surprising 
that many authors have considered the question of estimating an origin/destination matrix from a 
variety of data sources. These range from home or roadside surveys to historical data and traffic 
counts, preference being usually given to the latter sources because of their more affordable price. 

It is the purpose of this paper to propose an OD-matrix estimation method, called MEUSE, that 
can explicitly take into account detailed information about the structure of certain columns of the 
matrix. This is motivated by the availability, in actual practical studies, of surveys giving the 
origins of vehicles parked in some urban areas from an analysis of their registration plates. The 
fact that traditional methods ignore and even destroy this information has led us to investigate new 
alternatives. 

After introducing the data in the next section, we propose in a model to take the structure in the 
data into account in the section that follows. The next section is then devoted to practical aspects 
of solving this model. Its application to an illustrative example is covered in the following section; 
results obtained in the framework of a real application are presented and discussed in the sixth 
section. The following section contains a brief sensitivity analysis of the model. The eighth section 
then outlines some possible extensions of the ideas discussed while a final conclusion is suggested 
in the final section. 

DATA FOR OD-MATRIX ESTIMATION 

The purpose of this section is to discuss the type of data that is often used for estimating OD-
matrices. We distinguish between data commonly considered in most published studies and 
parking survey data, which is the basic motivation of our proposal. 

Usual data types 

A large number of travel demand studies are based on two types of data : a priori matrices and 
traffic counts. An a priori matrix can be built from past similar studies and from the results of 
home- and roadside surveys. Such an a priori matrix is unfortunately often unreliable because of 
the disparity in quality of its parts, resulting from possibly several successive and partial updates. 
Furthermore, it is commonly the case that assignment of this matrix cannot reproduce observed 
flows. 

Traffic counts are also used in many applications, because they are often already available and 
because the cost of additional counts is relatively low. It is well-known that even a large number 
of traffic counts is not enough to determine a unique OD-matrix (see for example Bell, 1983; 
Cascetta and Nguyen, 1988; Robillard, 1975; Van Zuylen and Willumsen, 1980). 

Parking surveys 

In some recent traffic studies in Belgium (for the cities of Brussels, Charleroi, Liège and Namur), 
car parks within the city centre were surveyed and the registration plates of vehicles parked therein 
were sampled (with a typical sampling rate of 20%). Given the necessary administrative 
permission (in order to preserve parking users' privacy, formal guarantees must be explicitly given 
on the confidentiality of treatment), it is possible to obtain the addresses of each one of the vehicle 

80 	VOLUME 2 
7TH WCTR PROCEEDINGS 



ORIGIN•DESTINATION MATRIX ESTIMATOR 
BIERLAIRE & TOINT 

owners. This information can then be used for estimating the number and, most importantly, the 
spatial distribution of trips whose end is the considered car park. 

The use of this data is however conditional to the following assumptions. 
1. Vehicles are driven from the address of their owner directly to the considered car park. 
2. The centroid associated with the car park must be such that most trips actually end in the car 

park, which means that private transportation mode is largely dominant for this centroid. This 
last condition is of course easier to satisfy if only one transportation mode is studied. In 
particular, it is automatically satisfied when the only mode considered is the private car. 

3. The spatial distribution of arriving vehicles is time independent. 

Guarantees that these assumptions are verified for a given car park are of course outside the 
survey itself, but can be obtained from other sources. For instance, one may know that 80%, say, 
of trips using private transportation in a city are home-based, as is the case for Namur. When car 
parks are associated with enterprises, the proportion of trips using alternative modes (such as 
public transport) can be separately available. It is of course good modelling practice to check these 
assumptions as much as possible, but this is not the subject of this paper. We will only assume 
below that parking surveys can be used in the framework just discussed. 

There is an additional difficulty in using the data obtained by the parking surveys. The 
measurements indeed give the vehicles present in the sampled car park at survey time, and not the 
vehicles that effectively arrived in the parking during the estimation period, that is the interval of 
time for which the OD-matrix is being computed. Typically, parking surveys were performed 
between 10 and 12 a.m. for an estimation period of one hour within the morning peak period 
(7h30 to 9h). As a consequence, not every vehicle observed in the survey is relevant to the 
estimation, but only the fill-up proportion 

number of vehicles arriving in car park j during the estimation period 
— f  J 	number of vehicles present in car park j at survey time 

of observed vehicles. For example, if a parking is filled in 2 hours and estimation period covers 
only 1 hour, then the corresponding fill-up proportion should be 1/2. Using the convention that 
rows of the OD-matrix are associated with origins and columns with destinations, we note that the 
parking survey data fixes the relative magnitude of the matrix entries in columns corresponding to 
sampled car parks. The fill-up proportion 

f j 
then determines the absolute values of entries in the 

j-th column from the number of observed vehicles in car park j at survey time. The fill-up 
proportions 

f j 
are often unknown and cannot always be collected in the field without substantial 

effort. We therefore suggest to estimate them when necessary. 

THE MEUSE MODEL FOR OD-MATRIX ESTIMATION 

Given the data and problem, many methodological choices have been proposed. Among the most 
popular ones, we note the class of log-linear models (entropy maximization or information 
minimization), as analyzed for instance, in Bell (1984) and Van Zuylen and Willumsen (1980), 
Bayesian estimation techniques (Maher, 1983), maximum likelihood methods (Spiess, 1987), 
multi-objective analysis (Brenninger-Göthe, Jörnsten and Lundgren, 1989) and generalized least-
squares algorithms (Bell, 1991; Cascestta, 1984) (see Bierlaire, 1991 for a survey of these and 
other techniques). The model that we propose falls in the class of generalized least-squares 
estimators and is built to handle the parking survey data. It is called MEUSE, for Matrix 
Estimation Using Structure Explicitly. 

(1) 
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A priori matrix and traffic counts 

Part of our proposal follows the classical formulation, where one minimizes a combination of the 
distances from the new OD-matrix to its a priori estimate and from the observed traffic counts to 
the assigned flows. More formally, the objective function that we wish to minimize includes terms 
of the form 

E 	wl j (Tij-tij)2 + y Ewâ (Va — va)2 
iEO,jED 	 aEA 

where 
O is the set of potential trip origins in the network, 
D is the set of potential trip destinations, 
A is the set of arcs for which traffic counts are available, 
T11 is the desired entry of the OD-matrix T giving the estimated number of trips from the i-th 

origin to the j-th destination, 

r11 is the a priori known number of trips from the i-th origin to the j-th destination, 

Va is the flow on arc a resulting from the assignment of matrix Ton the network, 

va is the observed flow (traffic count) on arc a, 

wÎ j is the relative confidence one has in the value of tii , 

wâ is the relative confidence one has in the value of va , 

y is the global relative weight accorded to traffic counts compared with the a priori OD-matrix t. 

Note that the values of { Va }a E A are determined from the value of T by using the 
assignment equation 

p~T y =V a 
i E O,jED 

(3) 

for all a a A, where the coefficients peti represent the proportion of the flow from origin i to 

destination j using the arc a. The coefficients p are usually obtained by applying assignment 

techniques. It is assumed, in this context, that they are error free and flow independent. We realize 
that this assumption is somewhat restrictive and discuss later in the paper some possible extension 
of our methodology to more general situations. Of course, the variables T

i and Va must be 
non-negative for our problem to make sense. Formulation (2)-(3) is reminiscent of proposals by 
Cascetta (1984). 

Parking surveys 

We now introduce in our model suitable objective function terms whose purpose is to take parking 
survey data into account. We start by considering the simple case where the spatial distribution of 
origins for a given car park can be recovered without error. We note that, in this case, the entry 
Tif of the OD-matrix (where destination j is associated with a surveyed parking) is given by 

T y = f  tii 	 (4) 

(2) 
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where the unknown fill-up proportion f j is defined by (1) and where we assume that the number 

of vehicles collected in the relevant car park have been introduced in the j-th column of the matrix 
t. One often has an estimate of the ratio (1) from the practical organization of parking surveys. 

This estimate f~ can then be introduced in the model by replacing the first term in (2) by 

wÎ j (Tij — ti j)2 + y, w~ (f
1
— .)2 

iEO,jED IS 	 jES 

where S is the index set of the destinations where parking surveys were conducted. We next note 
that the situation described by equation (4) is of course idealized. In practice, errors and limited 
sampling in the survey data make it unlikely that all entries T in the same column can be 

expressed using a single fill-up proportion f j . More realistically, the relative magnitude of the 

nonzero entries in column j only approximates the idealized structure, and zero entries should not 
be taken as strict constraints because they might result from insufficient sampling. As a 
consequence, we partition the j-th column ( j ES) in two sets 

Pj ={iI iEOand ty >O}and Qj ={iI i EOand ty =O} 

which we consider separately. 

Examining the entries with their origin in pi first, we have that 

Ty= fey, with f u f 

where individual fill-up proportions f y have now been introduced, but whose values should be 

reasonably close to the ideal f j . We have chosen to express this constraint by first adding in the 

objective function terms of the form 

wil (f j - f i )2 ( j E S,i E P j ,W~ > O) (5) 

while imposing the constraint that the f ly average to f j in column j, that is 

1 f j=- E f t 	( 6) 
njiEPJ 

where n j is the number of entries in P1 . Substituting (6) into (5) shows that we in fact 

minimize the weighted variance of the positive fill-up proportions f around their (idealized) 

mean f 1 . 
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The MEUSE model 

Gathering all terms, we obtain our new MEUSE model, whose objective function is 

E 	wl'(T~ - r~)2 +Y Ewâ(Va- va)2 + 
iEO,jEDIS ~ 	aEA 

E wj(f j—f )2 + 	E 	w~(.fi•—f •)2 + 
jES 	~ 	 jES ,iEP j , J 	, 

(7) 

E 41i 
jES,iEQj 

where 

Va= E pp'y+ E 4Tij+ y PVii ry (8) 
iEO,jEDIS 	jES,iEQ j 	jES,iEPj 

f j = 1 E f y (j ES) 	 (9) 
nji EP j 

j >0. 	 (10) 

SOLVING THE MODEL 

Once stated, the model must of course be solved. We note that, after substituting (8) and (9) in (7), 
(7)-(10) represent a large-scale convex quadratic program subject to bound constraints. The 
solution of such a model is therefore conditional to the availability of numerical software capable 
of handling large nonlinear optimization. In the experiments described below, we have used 
LANCELOT, a Fortran package by Conn, Gould and Toint. This package is not specialized for 
quadratic programs, but aims at solving general nonlinearly constrained problems. It uses an 
augmented Lagrangian algorithm combined with trust region and specialized data structures. 
Conjugate gradients are applied in inner iterations in order to (approximately) solve Newton's 
equations. The reader is referred to Conn, Gould and Toint (1992b) for more detail. 

Determination of the weights 

Ideally, the choice of each of the weights wut , 7 , wav , wis and wit. in (7) should reflect the 

relative confidence one has in the associated data items. We now consider how these weights can 
reasonably be chosen in practice. 

We first note that some of these choices have already been considered in the literature. Indeed the 

presence of the weights w~ , Y and wâ in (2) (and thus in (7)) is classical. An attractive 

approach to determine their values is to identify the weights with elements of the inverse of a 
dispersion matrix of both the a priori information and traffic counts. We refer the reader to 
Cascetta (1984) for a description of this technique. 
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Consider now the choice of the weights wS indicating the confidence in f; , the a priori value of 

the fill-up proportions for car park j. If these values result from actual measurements (countings at 

the car parks' entrances, for example), the choice of wj may be handled as that of the wâ . But 

it may happen that such measurements are unavailable and that little is known about the true 
values of the fill-up proportions. In this case, we suggest to choose a relatively low weight value 

for wsi . 

We now turn to the problem of choosing a value for the weights w j of (7). At variance with 

those considered in the previous paragraph (reflecting the confidence in collected data), these 
weights instead reflect the confidence one has in a structural assumption, namely that the parking 
surveys provide correct information on trip origins. Unfortunately, the authors are unaware of any 
statistical technique that mixes both types of confidence (on data and assumptions), which implies 
that a specific procedure should be suggested. 

If we denote by mu the proportion of trips from i to j such that the three basic assumptions of 

noted earlier hold and by p the sampling rate in the parking surveys, we may then define 

m~  
b~ =myty = —t ' y 

an estimator of b , the true number of trips from i to j satisfying our basic assumptions. In this 

equation, t'j is the observed number of vehicles in car-park j registered at origin i. We assume 

that this data is extracted from an hypergeometric distribution 

t'y = '(D j ,4 >pD j) 	 (12) 

where t y is the ij-th element of the (unknown) true OD-matrix and where D j = ~i E Ot t is 

the (observable) number of vehicles present in car park j. Defining now mj the proportion of 

trips to car park j such that our basic assumptions hold, ie. 

>I E Om~ t 
mj- 

>i E Oty 

we may view 

 b.. 
J f~ =7. 

J mjtJ 
(13) 

as an estimate of the individual fill-up proportions f y taking into account the dispersion of these 

fill-up proportions around their mean and the a priori approximation of this mean. We then 

suggest to choose the weights wit' as the inverse of the variance of this estimate, that is, using 

(11), (12) and (13), 
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m~ pt (D j -1) 
wt. - 2 

2 	
(14) 

fmm y (1 —p)(Dj—t~) 

This proposal seems adequate when more detailed information is not available: it includes the 
effects of sampling, the confidence in the assumptions and the dispersion around the assumed 
distribution of origins. 

Underdeterminacy 

One of the difficulties that appears in the practical solution of (7)-(10) is the fact that, for some 
otherwise unconstrained entries Ty , the a priori value tu is unknown. Let us denote 

Z = {(i, 	y is unknown} . If the terms indexed by Z in the first term of (7) are neglected, the 
values of these entries are `floating" and the minimization problem is structurally singular. This 
causes convergence of LANCELOT to be very slow. To circumvent this problem, we have chosen 

to take a value of 1 for each unknown tu with a relatively low associated weight w~ . This 

choice is similar to that made by entropy methods for these entries, where the typical term (see 
Ortuzar and Willumsen, 1990) TylnTy—Ty is minimized for Ty = 1 . 

Problem scaling 

When applying minimization software like LANCELOT, it is useful to scale all variables and 
constraints such that their sizes are comparable. The technique we have used to achieve this goal is 

to use the scaled variables T = 	y , V a = V a / va and f . = f j / f . . The weights are 

suitably adjusted. 

AN ILLUSTRATIVE EXAMPLE 

Before presenting the results obtained with MEUSE model on real data, we first discuss a small 
illustrative example. 

We consider the network of Figure 1 and assume that the true OD-matrix is given by Table 1. The 
a priori matrix is defined as a multiple E of the true matrix. This choice ensures that the relative 
sizes of the cells are correct. Traffic counts are computed without error from the assignment of the 
true matrix on the network. It is assumed that an all-or-nothing assignment is performed, so that 0 

and 1 are the only possible values for the coefficients pg . The flow on each arc and the list of 

non zero pg are listed in Table 2. 
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Figure 1 	The network for the small example 

Table 1 	The true OD-matrix 

1 2 3 4 5 6 
1 120 100 50 20 25 
2 	100 90 70 30 30 
3 	240 200 60 20 70 
4 	60 510 80 60 150 
5 	180 90 300 60 20 
6 	280 160 90 40 20 

Table 2 Nonzero assignment coefficients 

Arc Flow 
(4j)such that pCili  =1 

1 1460 (1,2)(1,3)(1,6)(3,2)(4,2)(4,3)(4,6)(5,2)(6,2) 
2 500 (1,3)(1,6)(2,3)(2,6)(4,3)(4,6) 
3 2110 (2,1)(3,1)(3 ,2)(4,1)(4,2)(4,3)(4,5)(4,6)(5,1)(5,2)(6,1)(6,2) 
4 130 (1,4)(1,5)(4,5) 
5 200 (2,1)(2,4)(2,5) 
6 410 (5,3)(5,6)(6,3) 
7 840 (1,6)(2,6)(3,1)(3,2)(3,4)(3,5)(3,6)(4,6)(5,6) 
8 1530 (1,4)(2,1)(2,4)(3,1)(3,2)(3,4)(5,1)(5,2)(5,4)(6,1)(6,2)(6,4) 
9 1110 (3,1)(3,2)(3,4)(3,5)(6,1)(6,2)(6,3)(6,4)(6,5) 

We first apply the MEUSE model without parking surveys, that is with S = 0 . In this case, the 
model is a classical generalized least-squares (GLS) estimator. We have chosen the weights in the 
model reflecting our accurate knowledge of the perturbations to the true data. More precisely, 
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w~=1/t~ (i e O,j e D) 

y N,1 =1000 (a e A) 

for a value of E = 1.15. Indeed, since the perturbation of the a priori matrix is uniform, the weight 
should be inversely proportional to its value. However, the countings are exact, which 
theoretically imposes to choose infinite weights. We have chosen 1000 to avoid severe numerical 
difficulties. The relative errors between the true values of Table 1 and the results obtained are 
shown in Figure 2. 

Figure 2 	Errors with GLS estimator 

We immediately note the lack of structure in the errors. This is expected because the model used 
first aims at reproducing the traffic counts. As each cell is allowed to vary independently, the 
structural information present in the a priori matrix is lost. 

We next apply the MEUSE model with parking surveys at nodes 1, 2 and 3. This is done without 
modifying the t (the first three columns of the matrix then represent the parking surveys), but 

by defining S = { 1,2,3 }. The weights wi are set to 1000, for reasons identical to those 

described above for y 	. We have furthermore assumed that the priori fill-up proportions are 

unknown: we have chosen an arbitrary value of f . = 1 (j E S) with a very low weight. Again, 

this weight should theoretically be chosen as zero, but this choice would generate a singular 

estimation problem. We have set ws. = 0.001 (j e S) to avoid this difficulty. 
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The relative errors obtained are presented in Figure 3. 

Figure 3 	Errors with MEUSE (parking surveys at nodes 1, 2 and 3) 

The situation has clearly improved. As anticipated, the errors corresponding to the destinations 1, 
2 and 3 almost vanish. The other errors also decrease significantly. 

We finally apply the matrix estimator SATURN/ME2 (Van Vliet, 1982) to this example. The 
corresponding relative errors are plotted in Figure 4. As is the case for the GLS estimator, the 
structure of the matrix is lost. The MEUSE model therefore seems an attractive alternative, at least 
on this small example. 

As a last exercise, we compute the cross-sensitivity of the total error as a function of the number 
of columns in S and perturbation of the a priori matrix. We apply the MEUSE model for the 
choices E = 1.05, 1.10, 1.15, 1.20, 1.25 and 1.30 (corresponding to perturbations of 5, 10, 15, 20, 
25 and 30 %, respectively), each time using from 0 (ie. the GLS estimator) to 6 columns in S. The 
resulting values for the error 

6 
(T — 4)2  

= 1 

are illustrated in Figure 5, where we clearly see that the impact of a given perturbation level 
decreases with the amount of underlying structure used. 
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Figure 4 	Errors with SATURN/ME2 estimator 

dtPpLI ~G'A4ION TO A REAL CASE STUDY 

We next describe the application of the MEUSE model within a practical OD-matrix calculation 
for the city of Namur (Belgium). As for the illustrative example, we also ran the GLS and 
SATURN/ME2 estimators on this problem for comparison. 

We emphasize that our purpose, in this comparison, is to show that all three models behave 
differently. This is therefore not a complete application exercise, where several iterations between 
demand estimation and assignment would typically be performed. 

The problem 
The network under study has 106 centroids, all situated in the city centre (the "Corbeille"). 
Available data for this estimation consists of 
1. a partial a priori matrix obtained from populations and traffic counts on the boundary of the 

studied area, 

2. a set of 63740 coefficients p resulting from the equilibrium assignment of the a priori 

demand t on the network, using the SATURN model, 
3. a set of 146 traffic counts, both from automatic cable counters and manual data collection, 
4. a set of 60 parking surveys. 

90 	VOLUME 2 
7TH WCTR PROCEEDINGS 



:.~ 

~~

0 

25 
 0%~ 

~®~J
20% 

f 	 . ©15% 
I 

 

 10 % 	Perturb. 
vo 

OPK 1PK 2PK 3PK 4PK 5PK 6PK 
Number of exploited parking data 

N
or

m
  o

f t
o t

al
 e

rr
or

  

120 

100 

80 

60 

40 

20 

ORIGIN-DESTINATION MATRIX ESTIMATOR 
BIERLAIRE & TOINT 

Figure 5 	Global error as a function of the amount of structure used and perturbation size 

This data was collected and prepared for the Wallonie Regional Government by STRATEC, a 
specialized consultancy firm, and the obtained results were of direct interest to both STRATEC 
and the Regional Government. We note that, according to STRATEC, little confidence can be put 
in the a priori matrix and fill-up proportions. 

Results for MEUSE 
Incorporating this set of data in the MEUSE model yields a bound constrained minimization 
program with 11276 variables (10542 T , 146 Va and 588 f ). In order to reflect the 

reliability of our data sources for the problem, the various weights were chosen as 

y wp = 1 / v  (a E A) and yvfi = 0.001 ( (i, j) E Z ). The first of these choices corresponds to 

assuming a Poisson distribution on the flows and the second to the suggestion of underterminacy. 

The wit. (i E O, j E S) are chosen according to (14) with the values m j = m~ =0.8 and p=0.2 

obtained from external sources. Finally, the suggestions of Cascetta (1984) could not be applied to 
the a priori matrix because it does not result from an OD survey, and we have chosen to reflect the 

relatively poor quality of this data by setting wf; = 1 / t~ (i E O, j S) . A similar choice was 

made for the fill-up proportions, where w = 1/ f 
i 

(j E S) . 

Of course, the true values of the matrix entries are unknown, and we can only measure accuracy of 
the result indirectly: we illustrate, in Figure 6, the fitting of the flows resulting from the 
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assignment of the computed demand on the network with the observed traffic counts. In this 
figure, the abscissa of each square corresponds to an observed flow while its vertical coordinate is 
the corresponding computed value. The ideal situation would be to have all squares on the 
diagonal. The small deviation allowed by MEUSE in order to take measurement errors into 
account explain the slight dispersion around this ideal curve, but the results are very satisfactory. 

200 	400 	600 	800 	1000 
Countings 

1200 	1400 

Figure 6 Flow fit for the MEUSE model on Namur 

Figure 7 illustrates the distribution of the fill-up times associated with the 60 parkings considered 
in this study. It shows realistic fill-up times for more than 70 % of the cases. Indeed, it is known 
from other sources that the majority of fill-up times should fall between 0 and 3 hours. The 15 % 
of outliers are easily explained because the model's assumption do not hold well for the 
corresponding surveys: in particular, they involve on-street parking for which sampling is more 
difficult. 

Comparison with GLS and SATURN/ME2 

As for the illustrative example, we also tested SATURN/ME2 and GLS on our real application. At 
variance with the example, not all entries in the a priori matrix for the real case are non-zero. 
Since ME2 is a multiproportional estimator, it provides a facility to "seed" zero entries in order to 
allow them to leave zero. We have tested ME2 on our problem, both with and without this facility 
(the seed value was chosen to be 1.0). Needless to say, both GLS and ME2 (in both versions) 
provide adequate fit between estimated and observed flows. 

We first analyze the total number of trips computed by the four estimators. This number is 
pictured in Figure 8, where a further disaggregation between parking related and other entries is 
also shown. 
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Figure 7 	Fill-up times for the 60 parkings in Namur 

Interestingly, ME2 gives, in its two variants, the lowest number of trips, while the largest is 
produced by GLS, the difference being mostly for matrix entries associated with the parking 
surveys, that is entries in the set P {(i, j)I j E S and i E pi} . MEUSE and GLS produce 
substantially different results, although they are based on a similar philosophy : they indeed 
mostly differ by the special treatment applied within MEUSE to the 588 entries (5.2 %) of T. This 
is apparent when examining, in Figure8, the distribution of trip numbers for these entries and for 
the rest of the matrix. 

We finally examine the aggregated numbers of nonzero entries in the matrix. 

The results are shown in Figure 9 for the four estimators. The two versions of ME2 present an 
extreme behaviour, which can easily be understood by the multiplicative nature of these technique 
and the presence/absence of seeds in zero entries of the a priori matrix. GLS and MEUSE appear 
to provide a compromise between these extremes. 

SENSITIVITY 

Due to the large amount of model data and parameters, it is also important to examine the stability 
of the proposed method with respect to variations in these parameters. We thus carried out some 
tests whose purpose is to measure this sensitivity. Various classes of model parameters and data 
were successively perturbed by a random value drawn from a Gaussian distribution of zero mean 
and variance equal to 10 % of the perturbed quantity. The results of the MEUSE model were 
recomputed for each perturbed problem. The relative differences between the results 
corresponding to the perturbed and unperturbed problems were then measured, both in QZ and 
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$00 norms. They are reported in Table 3. More precisely, the values quoted in this table are 

defined by 

Figure 9 	Number of nonzero entries 

+ Tu —T~)2  
~ 	 ifp =2 

ETi J 
max i. T~ — T j I> 

ifp=co 
max ijTJ 

where T is the matrix estimated with the original model and T" is the matrix computed with the 
perturbed problem. 

We immediately note the relatively low sensitivity of the model with respect to its internal 
parameters, as indicated in the first five lines of Table 3. The fact that MEUSE is more sensitive to 
perturbations in its data than in its parameters is a good feature of this model. As expected, the 
results are most sensitive to variations in the traffic counts. 
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Figure 8 	Number of estimated trips 

We conclude this section by noting that the application of MEUSE on both the illustrative 
example and the real problem indicates its potential and seems to assess its applicability. 

Table 3 	Results of the sensitivity analysis for 10% perturbations 

Perturbed quantities p =2 p =oo 

r 7.83103 6.58103 

wSi (j E S) 1.07 10-2 7.51 103 

4 (jE S,i E p j ) 1.33102 1.75102 

(i E 0,j E D l S, t ii known) 3.41 10-2 4.82 102 

(ieO, jEDIS,ty unknown) 2.06 102 2.17 10-2 

~j (jES) 2.09 102 2.17 102 

VQ (qEf1) 4.41 10 1 4.05 101 

tu (jES,iEPj ) 2.79 10-2 4.50 102 

t~ (IEO, j EDI S) 8.98 10-2 1.26 101 
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PERSPECTIVES 

Amongst further extensions of our model, we also note the following possibilities. A more general 
OD matrix structure than that arising from parking surveys could also be exploited by the same 
approach. For instance, one could consider on-street parking whose associated destination is the 
set of neighbouring centroids. 

Although theoretically possible, the inclusion of flow dependent path flow proportions pg in the 
model leads to an extremely large minimization problem, which is (at least for now) unrealistic. 
As is the case with other demand estimators based on fixed path flow proportions, one can instead 
iterate between demand estimation and equilibrium assignment. The convergence of this scheme 
seems possible because equilibrium assignment is continuous as a function of travel demand (see, 
for instance, Fiacco, 1983), but should be confirmed by a dedicated analysis. 

Improving the numerical algorithm for our model solution is also of considerable interest. 
Although the use of LANCELOT is suitable for exploratory purposes, this tool is far too general 
for the problem at hand. A specialized algorithm is then expected to bring substantial efficiency 
gains. We could, for instance, exploit the fact that MEUSE results in a large-scale sparse 
minimization problem with quadratic objective subject to simple bounds, and apply special 
purpose techniques (see, for example, Bierlaire, Toint, Tuyttens, 1991 or the Harwell Subroutine 
VE14 by Gould based on Conn et al. 1992). 

CONCLUSIONS 

We have introduced MEUSE, a new OD estimation method that can take matrix structure into 
account, in particular when this structure is obtained from parking survey data. The behaviour of 
the model has been analyzed both on a simple illustrative example and in a real application. The 
results obtained are coherent with what can be expected for the method and indicate the nature of 
the methodological improvement. They also show that the new approach can effectively be 
applied in realistic contexts. 

Some extensions of the MEUSE model have been pointed out, including further use of the OD 
matrix structure and improved computational procedures. They are the subject of ongoing research 
and will be reported on elsewhere. 

More globally, the method and results presented in this paper indicate that parking survey data can 
indeed be taken into consideration when estimating travel demand in an urban context. 
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