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Abstract 

The high cost of congestion caused by incidents has prompted a 
growing worldwide interest in developing efficient and effective 
automated incident detection methods. This paper describes the 
development of new incident detection techniques based on artificial 
neural networks (ANNs). These models have the potential to provide 
faster and more fault-tolerant operation. 
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INTRODUCTION 

The high cost of congestion caused by incidents, mainly in terms of traffic delays, air pollution 
and deteriorated safety conditions, has prompted a growing worldwide interest in developing 
efficient and effective automated incident detection methods. Incidents are defined as non-
recurring events such as accidents, disabled vehicles, spilled loads, maintenance work and other 
events that disrupt the normal traffic flow and result in a capacity reduction of a facility. Such 
incidents are believed to constitute about 50-60% of the total delays on US freeways (Lindley, 
1987) and this is also expected to increase as facilities become more congested. Therefore, the 
benefits to be derived from early incident detection and quick response can drastically reduce 
traffic delays and improve road safety and real-time traffic control. Motorists should be informed 
by providing real time traveller information to allow for alternate routing of traffic and timely 
dispatch of emergency services. Intelligent Transport Systems (ITS) technologies are structured to 
address these needs through Advanced Traffic Management Systems (ATMS) and Advanced 
Traveller Information Systems (ATIS). For these systems to be effective, it is necessary to develop 
procedures for detecting incidents which are both reliable and quick to respond. 

This paper presents an overview of Automatic Incident Detection (AID) systems and describes 
some of the most widely used AID algorithms. The framework for a new AID algorithm, based on 
Artificial Neural Networks (ANNs) is then discussed and initial incident detection results 
presented. 

AUTOMATIC INCIDENT DETECTION 

Automated incident detection systems involve two main components: a traffic detection system 
and an incident detection algorithm. The traffic detection system provides the traffic information 
necessary for detection while the incident detection algorithm interprets that information and 
ascertains the presence or absence of incidents. Inductive loop detectors embedded in the freeway 
pavement are typically used to obtain traffic data, primarily on occupancy and volume. Dual loop 
installations also provide speed data. These data form the input to an incident detection algorithm 
which would raise an alarm to indicate the presence of an incident on the facility. 

Algorithm types 

A number of automated incident detection algorithms have been developed or proposed over the 
last two decades. Their structure varies in the degree of sophistication, complexity and data 
requirements but can generally be grouped into main categories as discussed below. 

Comparative or pattern comparison algorithms 

The core logic of these algorithms is based on comparing observed upstream and/or downstream 
traffic data, within and between lanes, with pre-established threshold values to declare the 
occurrence of an incident. These are perhaps the most widely used incident detection algorithms 
and include the California-type algorithms (Payne and Tignor, 1978; Levin and Krause, 1979), the 
UK High Occupancy (HIOCC) and Pattern Recognition (PATREG) algorithms (Collins et al. 
1983), the ARRB/VicRoads incident detection algorithm (Luk and Sin, 1992; Sin and Snell, 1992) 
and the Minnesota algorithm (Stephanedes and Chassiakos, 1993). A form of comparative 
algorithm has also been implemented using data from a wide-area video detection technology 
known as AUTOSCOPE (Michalopoulos et al. 1993). 
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McMaster algorithm 

The McMaster algorithm is based on a catastrophe theory of traffic flow describing the 
relationship between speed, flow and occupancy (Persaud and Hall, 1989) and utilises data 
observed at a single detector station. The volume-occupancy plot of detector data is separated into 
four areas corresponding to different states of traffic conditions (Gall and Hall, 1989). Incidents 
are detected after observing specific changes of the traffic state (movement of data points between 
the four regions in the plot) in a short time period (two intervals). The algorithm is based on a 
single station detection logic, using 30 second data from the median (fast) lane. The McMaster 
algorithm has also been combined with a comparative-type algorithm to produce the 
AUTOSCOPE Incident Detection Algorithm (AIDA) (Michalopoulos et al. 1993). This combined 
algorithm is used in conjunction with the AUTOSCOPE video detection technology. 

Time series algorithms 

This general class of algorithms is based on the logic of using the recent history of traffic variables 
and employing time-series models to provide short-term traffic forecasts. An incident alarm is 
raised if significant deviations (typically 2 or more standard deviations) between field and forecast 
values are observed. Three most widely known algorithms in this class are the Standard Normal 
Deviation algorithm (Dudek and Messer, 1974), the Double Exponential algorithm (Cook and 
Cleveland, 1974) and the Auto-Regressive Integrated Moving Average (ARIMA) algorithm 
(Ahmed and Cook, 1982). 

Artificial neural networks 

Few of the previously developed algorithms have been implemented in practice due to various 
limitations and varying operational levels in terms of performance criteria such as detection rate, 
false alarm rate and time-to-detect. Therefore, the need is pressing for more effective real-time 
incident detection algorithms that maximise detection rate while only generating an acceptable 
level of false alarms. Furthermore, desired new-generation algorithms should also lend themselves 
to implementation on new platforms such as parallel computers and must have the required 
flexibility for the smooth integration with emerging ITS technologies. One promising approach to 
address these objectives involves the application of Artificial Neural Networks (ANNs). These are 
also referred to as parallel distributed processing systems or connectionist systems and have been 
implemented within recent years as a paradigm of computation and knowledge representation. 

Neural Networks, as the name implies, are loosely modelled after the biological structure of the 
brain. A neural network is constructed from a set of inter-connected simple processing elements 
(PEs). Each PE performs only a few simple computations such as receiving inputs from other PEs 
and computing an output value which it sends to other PEs. A neural network is inherently parallel 
in that many PEs can carry out their computations at the same time. The processing ability of the 
network, stored in the connection strengths or weights, is obtained by a process of adaptation to, or 
learning from, a set of training patterns. Neuro-computing differs from other branches of 
computing in that the algorithms are "data-driven". Rather than the computer working through 
lists of instructions written by a programmer, it deduces the strengths of different relationships by 
being exposed to a set of examples of the behaviour concerned. By absorbing patterns in the data, 
the network learns to generalise. 

The neural network approach has a number of strengths which lead to it being explored as a likely 
solution to incident detection. These strengths include: (1) They are well-suited for parallel 
implementation because they are structured such that only a few steps are performed per PE. This 
makes them attractive for real-time pattern recognition and classification applications that need to 
process large amounts of data very fast (Maren et al. 1990). (2) The network itself develops the 
relationships by recognising and classifying the spatial and temporal patterns in traffic data and 
this provides greater flexibility compared to more "rigid" modelling frameworks. (3) The network 
has the capacity to recognise random fluctuations in traffic flow that cause many false alarms. (4) 
ANNs are highly fault-tolerant in the sense that given an input pattern with noise or disturbance, 
they would still be capable of recognising that input and providing an acceptable output. 
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Ritchie and Cheu (1993), demonstrated the feasibility of using ANNs for incident detection. They 
tested a multi-layer feed-forward (MLF) ANN on a freeway section using simulated traffic 
detector data. The results confirmed their hypothesis that spatial and temporal traffic patterns 
could be recognised and classified by ANNs. However, their results were limited in the sense that 
they trained the ANN models on simulated traffic detector data, used only volume and occupancy 
data and did not address operational issues such as the impact of detector malfunction and quality 
of input data on model performance. The work reported here is part of a research program that 
aims to address many of these unresolved issues. 

Performance measures for incident detection algorithms 

The performance of an incident detection algorithm is measured by three criteria: detection rate 
(DR), false alarm rate (FAR) and time-to-detect (TTD). The DR is defined as the number of 
incidents detected by the algorithm divided by the total number of incidents known to have 
occurred during the recorded time. The FAR can be defined in different ways depending on 
whether it is an off-line or on-line FAR. The on-line FAR (FARon) is defined as the number of 
time intervals (typically provided in 20 or 30-second cycles) which gave false alarms divided by 
the number of time intervals in the entire data set. The off-line FAR (FARoff)  is defined as the 
number of incident-free intervals which gave false alarms divided by the total number of incident 
free intervals. Finally, the TTD is the difference between the time of occurrence and the time at 
which the incident was declared or an alarm was raised by the algorithm. When an algorithm is 
being evaluated, however, it is customary to seek the mean time-to-detect (MTTD) a set of (n) 
incidents. The occurrence time of an incident is usually not known precisely and an estimate has to 
be deduced from loop detector data or records kept by police, traffic control centres or towing 
companies. 

The above definitions clearly show that both the DR and FAR measure the effectiveness of the 
algorithm while the MI-1'D reflects its efficiency. The detection rate and false alarm rates are, 
unfortunately, positively correlated. In order to detect more incidents, the algorithm thresholds are 
relaxed which causes some incident-free intervals to be interpreted as alarms. Since many false 
alarms are caused by random fluctuations in traffic flow, a persistence test is usually performed by 
testing warnings in a few consecutive intervals before declaring an alarm. This method, in 
conjunction with increased duration of the persistence test, has been shown to reduce the FAR. 
However, this was also found to reduce the efficiency of the algorithm since it increased the 
MTTD considerably. Clearly the three performance measures are all inter-related. The relative 
importance of the measures, however, is typically DR, FAR and MTTD. 

A FRAMEWORK FOR AUTOMATED INCIDENT DETECTION USING ANNS 

As implied by their name, ANN models can be visualised as a network. Consider the section of 
freeway shown in Figure 1(a) which is defined by upstream and downstream detector locations. A 
corresponding ANN model structure is shown in Figure 1(b). The detector station data form the 
input to the ANN. The output is a {0,1 } variable indicating the absence or presence of an incident 
in the freeway section, respectively. The parameters of the ANN model are established through a 
process known as training. In order to train a neural network to perform incident detection, the 
network must be presented with input detector data and output states for both incident and 
incident-free conditions. Therefore, the input to the ANN model comprises real-time speed, flow 
and occupancy measurements in 20-second intervals from each of the upstream and downstream 
stations. The output of the ANN model is the traffic state within the section. Output State 1 {0} 
represents incident-free conditions and output State 2 { 1 } represents incident-conditions. One of 
the well-known and widely used neural network models is the back-propagation or multi-layer 
feed-forward (MLF) network. These models are an outgrowth of earlier work on Perceptrons, with 
the addition of a hidden layer and use of a more robust and capable learning rule (Rumelhart et al. 
1986). 
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The back-propagation algorithm's popularity is due mainly to the solid theoretical foundations on 
which it rests. The algorithm has been successfully implemented in many pattern recognition 
applications across many disciplines (Maren et al. 1990). Cheu (1994) tested three ANN 
architectures suitable for incident detection and real-time classification problems. These included 
the multi-layer feed-forward (MLF) neural network, the self-organising feature map (SOFM) and 
the adaptive resonance theory (ART). The MLF, implemented with the back-propagation (BP) 
training algorithm, proved to be superior to the other architectures tested. The MLF was chosen 
for implementation in this study based on its earlier success, especially in real-time pattern 
recognition problems, and based on its demonstrated superior incident detection performance over 
the other ANN architectures (Cheu, 1994). In particular, the standard three-layer feed-forward 
neural network has been chosen for this study. It consists of a set of processing elements (PEs) 
arranged into three layers as shown in Figure 1(b): a layer of (n) input PEs is connected to a layer 
of (p) "hidden" PEs, which is connected to a layer of (11 output PEs. Each layer comprises at 
least one processing element. 

The detailed structure of the MLF is shown in Figure 1(b). The activity of the input PEs represent 
the raw information that is fed into the network (the input vector X= [X1 , X2 ,..., Xn ] ). The 

activity of each hidden PE ( h1) is determined by the activities of the input vector X and the 

weights on the connections between the input and hidden PEs ( Wij ). Similarly, the activity of each 

output PE ( yk ) depends on the activity of the hidden units (h1) and weights between the hidden 

and output units ( V1k). A typical unit ( k) in the output layer determines its activity by following a 

two step procedure. First, it computes the total weighted input, Nk, using the formula in equation 
[1]: 

P 
Nk 	 Vk = 1,...,m 	 (1) 

1=1 

Where h1 is the activity level of the jth unit in the hidden layer and V jk is the weight of the 

connection between the jth and kth PEs. 

Second, the unit calculates its activity yk using some function of the total weighted input. To 
obtain the activity level of unit k, a threshold value 8k is subtracted from the weighted input and 
the net input is then fed into a transfer function. Typically , the sigmoid function is used: 

1 
Yk — 	  

1+ e (Nk -ek ) 

In order for a neural network to perform some actual task, it must undergo a training process 
during which the weights on inter-connections (W~j , Vjk ) and the thresholds associated with the 

PEs (0 ,Ok ) are determined. This process begins by assigning random initial values to all the 
connection weights. Then, each example from the training set is presented to the network and the 
output vector produced by the network is compared with the desired results. The error between the 
actual and desired outputs is computed. By applying a learning rule, usually some form of the 
Generalised Delta Rule (Rumelhart et al. 1986), the inter-connection weights and other network 
parameters are adjusted in such a way that the error between the desired and actual outputs is 
reduced. This is achieved by implementing a gradient descent on the error curve of the network's 
output. 

(2) 

VOLUME2 111 
7TH WCTR PROCEEDINGS 



Upstream 

x3 
Speed Flow 

x4 x5 

(b) ANN Model 
Downstream 

Speed Flow Occupancy 

K1 	x2 

Occupancy 

xn 

TOPIC 16 
TRAVEL SUPPLY-DEMAND MODELLING 

(a) Physical System 
Downstream 	 Upstream 

❑ ❑ 	 ❑  ❑ 
❑ ❑ 	~ 	 ❑  ❑ 

❑ ❑ 	 ❑  ❑  

Section of Interest 

Dual loop detector stations provide flow, speed and 

occupancy data ❑  

• • • 
	Input Layer (X) 	• 	• 

• 

Output Layer (Y) 
k 

Incident State (0,1) 

Figure 1 	ANN modelling framework 

DATA FOR ANN DEVELOPMENT 

In order to train a neural network to perform incident detection, the network must be presented 
with examples of input detector data (speed, flow and occupancy) and output states for both 
incident and incident-free conditions. Therefore, the data required should at least have a 
description of the state of traffic along the freeway in addition to detector data comprising traffic 
flow measurements at regular time intervals for each detector station. In contrast to previous 
research which has relied on simulated data for model development (Ritchie and Cheu, 1993), this 
study relies on real data. 
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Data collection 

The data were collected from 15 inductive dual-loop stations located within a site 8.5 km in length 
on the Tullamarine Freeway in Melbourne, Australia. Dual inductive-loop detectors are placed in 
every lane of the Freeway in both the inbound and outbound directions spaced at distances 
between 450 and 1070 meters. The data for the study were assembled from two data sets held at 
the VicRoads Traffic Control and Communications Centre (TCCC). The first data set contained 
information logged by the operators at the TCCC regarding the incidents that occurred on the 
Tullamarine Freeway. However, when operators are busy managing incidents, it is not uncommon 
for important details to be left out from the records. This presented some difficulties when 
examining the incidents since in many cases the location of the incident or its direction remained 
unknown from the record. All the incidents that were logged for the selected segments of the 
Tullamarine Freeway were extracted from this database. These included some 385 incidents for 
the period between January 1992 and March 1994. The second data set contained detector station 
data comprising speed, flow and occupancy measurements in 20-second cycles. Each data file 
obtained comprises the detector measurements for the whole freeway for that specific day. Data 
files comprising incident-free days were also obtained. 

Each of the 385 incidents was then examined individually. Out of the 385 incidents recorded by 
the operators in the log, only 120 incidents could be confirmed. The rest either occurred outside 
the 8.5 km segment of the freeway or during low-volume conditions and therefore had no effect on 
traffic conditions. Others could not be confirmed due to missing information or data or due to 
faulty detectors. One section in the outbound direction of the Tullamarine Freeway was selected 
for initial modelling. Figure 2 shows the selected section, between stations S5 and S6, along with 
related upstream and downstream stations. A total of 12 detectable incidents occurred inside this 
section, which also had the maximum detector-station separation of 1070 meters. Furthermore, in 
order to minimise false alarms within the test section, the model should also be trained on 
incidents that occurred outside the test section. A total of 11 incidents that occurred within the 
immediate two upstream sections and two incidents that occurred within the immediate 
downstream section were also included in the database. This resulted in a set of 25 detectable 
incidents between stations S3 and S7 in Figure 2. 

Assignment of desired output states 

The input to the ANN model comprises speed, flow and occupancy measurements in 20-second 
intervals from the upstream station (S6) and the downstream station (S5) as shown in Figure 2. 
The output of the ANN model is the traffic state within the section (State 1 for incident-free 
conditions and State 2 for incident-conditions). These desired output states must be provided for 
each input vector in the data, ie. every 20 seconds. It is therefore essential that the times defining 
the start and end of incidents are determined such that the correct output states are assigned to the 
data. As noted earlier, previous studies have used simulated data for ANN model development 
(Ritchie and Cheu, 1993). In that case, the incident start/end times are known precisely. However, 
when "real-world" data are being used, the incident start and end times are rarely, if ever, known 
precisely. In this study, estimates of these times were compiled from the operator's log. These 
times, however, were reported as the times when the operator detected (or confirmed) the 
occurrence/clearance of incidents and not the times when the incidents actually occurred or ended. 
Therefore, it is still necessary to determine the specific 20-second interval that represents the 
start/end of an incident. The procedure used to arrive at these times is described below. All the 
input data between the start and end of incidents were assigned desired outputs (1) while the rest 
of the data were assigned desired outputs {0}. 
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Figure 2 	Section S3-S7 of Tullamarine Freeway 

Incident start times 

For the determination of the first 20-second interval representing the start of an incident, the first 
three 20-second consecutive intervals (one minute) of non-zero, non-increasing speed and flow 
and non-decreasing occupancy were identified. If the difference for each parameter between the 
first and last interval values is greater than a certain threshold (described below), the start of the 
first 20-second interval is assumed to represent the start of the incident (this will be referred to as 
the identification criteria). Since there are three parameters to investigate, this method provides 
three time values for the start of the incident. In many cases, these times do not coincide with one 
another which highlights that the criteria has not been met for the three parameters simultaneously. 
Therefore, if the identification criteria is met for the three parameters within the same 20-second 
interval, the start of that interval is assumed to represent the start of the incident. Otherwise, the 
earliest of the three times is used. 

Care must be taken in the selection of the threshold value such that the random variations in the 
data are not mistaken for incident conditions on one-hand and such that the data is not pre-
conditioned in a manner that could influence the training of the neural network. It was observed 
that random fluctuations do not last as long as incidents and generally result in variations not 
exceeding 20%, while incident conditions usually last longer and result in greater deterioration of 
the parameters (normally exceeding 25%). Therefore, incident times were generated for the 25 
incidents for thresholds between 20% and 90%. It was found that lower threshold values resulted 
in earlier incident times and that the identification criteria was often not met at all for many 
incidents when higher thresholds were used. This is due to the fact that larger thresholds are only 
met when the conditions have deteriorated significantly. The use of high thresholds may therefore 
impede the detection of less severe incidents that only result in a moderate deterioration of 
conditions. As a result, the identification criteria was implemented using a threshold of 20%. 

As for the number of consecutive intervals over which the parameters were observed, the choice 
of one-minute (three 20-second consecutive intervals) was arrived at after careful examination of 
the detector data. It was observed that the data (as provided in 20-second cycles), exhibited 
random fluctuations for 20-40 seconds. Therefore, the choice of two consecutive intervals is 
inappropriate since these are inherent in the data. Similarly, and due to the random nature of the 
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data, the use of four intervals (80 seconds) was also deemed inappropriate. This is attributed to the 
difficulty in locating such four non-zero consecutive intervals where the criteria for the parameters 
would be met and even then, the incident start times generated were not earlier than those with 
three 20-second intervals. Therefore, the identification criteria was implemented using three 20-
second intervals. 

Incident end times 

For the determination of the first 20-second interval representing the end of an incident, the first 
three 20-second consecutive intervals (one minute) of non-zero, non-decreasing speed and flow 
and non-increasing occupancy are identified. If the identification criteria is met for the three 
parameters within the same 20-second interval, the end of that interval is assumed to represent the 
end of incident. Otherwise, the earliest of the three time values is used to signal the end of 
incident. The choice of threshold and consecutive intervals was determined in a similar fashion as 
for the incident start times described previously. Out of the three parameters, speed was found to 
be the limiting factor in the determination of the incident start times (80% of cases) and incident 
end times (96% of cases). 

Creation of training and training test data sets 
The next activity involved compiling the training and training test sets. The training set is used for 
determining the network parameters. The training test set is used to prevent the network from 
learning the specific patterns in the training set and thereby enables the ANN model to generalise 
better. The training test set issue will be discussed in more detail in later sections. 

The ANN models should be trained on a set of incidents that are representative of the population 
to which the network will ultimately be applied. The same applies to the training test set. Training 
an ANN model with a wide range of incidents that include different patterns (location, severity 
and duration) under a variety of flow conditions (heavy, moderate and light) helps improve its 
robustness in detecting incidents under varying conditions. Therefore, the 25 incidents were 
stratified accordingly and two sets were selected randomly into the training and training test sets. 
The next sections describe the procedures adopted to randomly select 13 and 12 representative 
incidents for the training and training test sets respectively. 

Incident severity 

Three incidents that occurred in Section S5-S6 (Figure 2) did not affect the fast lane. One was 
placed in the training set and the other two in the training test set. All other incidents resulted in all 
lanes being affected in and upstream of the respective sections where those incidents occurred. 

Incident duration 

The incidents were stratified into four categories of 30-minute duration. The distribution of 
incidents in the training and training test sets according to duration is as shown in Tables 1 and 2, 
respectively. 

Table 1 	The distribution of incidents in the training set according to incident duration 

Total Incidents t <_ 30 Duration (minutes) t > 90 

S4-S5 3 1 1 1 0 
S5-S6 6 1 3 1 1 
S6-S7 1 0 1 0 0 
Total 13 2 7 3 1 
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Table 2 	The distribution of incidents in the training test set according to incident duration 

Section 	Total Incidents 	t < 30 	Duration 	(minutes) 	t > 90 
S3-S4 2 0 1 1 0 
S4-S5 3 0 1 2 0 
S5-S6 6 3 2 1 0 
S6-S7 1 0 0 0 1 
Total 12 3 4 4 1 

Flow conditions 

The flow conditions (maximum vehicle per hour per lane (vphpl) calculated at the immediate 
upstream station from the incident during the last 15 minutes prior to the start of incidents) were 
used to stratify the incidents into one of three categories: incidents occurring during heavy, 
moderate or light flow conditions. The criteria for levels of service on basic freeway sections 
(AUSTROADS, 1988) were used as a guide in stratifying the incidents. Flows exceeding 1550 
vphpl were considered heavy flows, while those less than 700 vphpl were considered light flows. 
The distribution of incidents in the training and training test sets according to pre-incident flow 
conditions is as shown in Table 3 and Table 4, respectively. 

Table 3 	The distribution of incidents in the training set according to flow conditions 

Section 	Total 
Incidents 

 

Flow Conditions 
Light Moderate 	 Heavy 

S3-S4 3 0 1 2 
S4-S5 3 0 1 2 
S5-S6 6 0 2 4 
S6-S7 1 0 1 0 
Total 13 0 5 8 

Table 4 	The distribution of incidents in the training test set according to flow conditions 

Section 	Total 	 Flow Conditions 
Incidents 	Light 	 Moderate 	 Heavy 

S3-S4 2 0 1 1 
S4-S5 3 1 0 2 
S5-S6 6 0 2 4 
S6-S7 1 0 1 0 
Total 12 1 4 7 

TRAINING OF THE MLF NEURAL NETWORK 

The 13 incidents in the training set had a total duration of about 363 minutes. However, at least 15 
minutes prior to incident occurrence and after incident clearance were also included in the 
training. This is necessary to ensure that enough time was given for traffic conditions to stabilise 
prior to and after incident occurrence and clearance. This resulted in the training and training test 
sets comprising 1710 and 1970 minutes, respectively. Table 5 shows the distribution of State 1 
(incident conditions) and State 2 (incident-free conditions) vectors in the two sets. Each vector 
includes the traffic input (speed, flow and occupancy) along with the incident state variable (State 
1 or State 2). 
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Table 5 	Incident and incident-free intervals in the training and training test sets 

Data Set 
	Total Number of 	Incident-free 	Incident 

Intervals 	Intervals 
20-Second Intervals 	(State 1) 	(State 2) 

Training Set 5131 4042 1089 
Training Test Set 5910 5219 691 

Input features 

As this study is concerned with the application of ANN models to incident detection, the features 
to be investigated are therefore related to both the modelling tool (the ANNs) and incident 
detection parameters. The issues related to incident detection parameters are discussed first. 

Incident detection parameters 

One of the main issues in incident detection modelling is the selection of input features. The 
choice of traffic flow variables, detection logic and other related parameters is a function of the 
desired complexity of the model and the surveillance technology used. Some of the issues related 
to input features are discussed in the following sections. 

Single or dual stations 

This issue is related to whether inputs from one or two stations will be required to identify 
incidents within a section. It is generally accepted that incidents within a section will result in an 
increase in occupancy upstream and a decrease in flow and occupancy downstream compared to 
pre-incident conditions. However, some automatic incident detection (AID) systems are known to 
utilise only inputs from a single station which presumably enhances its generalisation potential. 
Single and dual-station models will be investigated in this study. 

Time intervals 

This issue is related to the number of 20-second input values that are needed for each decision 
regarding the presence or absence of incidents at any time interval (t). Incidents do not result in an 
instantaneous deterioration of conditions and therefore some time must be allowed before the 
effects of an incident are detected at a station. Inputs from the current time interval (t) and the 
previous four intervals (t-1, t-2, t-3, t-4) for each station will be investigated in this study. 

Station input 

Some of the available AID systems utilise station averages (eg. California algorithms) while 
others use input from the fast lane (eg. McMaster) or all lanes (ARRB-VicRoads model). The use 
of station averages or fast lane measurements obviously has the advantage of limiting the number 
of inputs to the ANN and thus decreasing the model's complexity. 

As noted earlier, three of the 25 incidents in the data only affected the slow and middle lanes. The 
feasibility of using fast lane (or averages across station) data to detect these incidents needs to be 
investigated. Therefore, station averages, fast lane and all lanes scenarios will be investigated in 
this study. Table 6 summarises the incident detection parameters. A total of 45 (3x5x3) models 
will therefore need to be investigated. Only an equal number of time intervals are considered for 
both the upstream and downstream stations. 
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Table 6 	Incident detection parameters 

Stations 	 Time Intervals 	 Station Input 
Dual Upstream & Downstream 	 t 	 Station Average 
Only Upstream 	 t, t-1 	 Fast Lane 
Only Downstream 	 t, t-1, t-2 	 All Lanes 

t, t-1, t-2, t-3 
t, t-1, t-2, t-3, t-4 

ANN features/parameters 

The next step after arriving at the structure of the 45 model types was the selection of an 
appropriate set of ANN features and parameters to use in the appraisal of these models. At this 
stage, it was necessary to determine the basic features of models (Maren et al. 1990). This 
included the selection of a training method (supervised/unsupervised), a network model (Back-
propagation(BP), Adaptive Resonance Theory (ART), Self Organising Map (SOM) etc.) and a 
learning rule (delta, cumulative delta, backprop etc.). The following ANN features were used 
consistently throughout the designed experiments. These features were arrived at after 
considerable investigation and based on the demonstrated performance of these features for 
pattern recognition problems in general and for and incident detection in particular (Maren et al. 
1990; Cheu, 1994). 

• Training Method 	: Supervised 
• ANN Model 	 : Logicon Projection Network 
• Learning Rule 	: QuickProp 
• Transfer function 	: Sigmoid 
• Output Ranges 	: 0.2-0.8 (instead of 0-1) 
• Objective Function 	: Classification Rate (the average of the correctly classified 

incident and non-incident states) 

Furthermore, to evaluate a neural network method in a useful way, the conditions that might be 
relevant to its performance should be varied systematically. These conditions include the number 
of inputs, training cases and hidden units, as well as the amount of noise, presence of irrelevant 
inputs and initial weights. It is generally accepted that designing the least complicated network 
provides good results. This is found to be true especially if the training data are noisy as a 
complicated network may learn odd relationships between the input and output based on the noise 
and not the data. The number of nodes in the hidden layer depends primarily on the size and nature 
of the training data. In general, the network performance can be enhanced by adding more nodes 
to the hidden layer. However, this only applies up to a certain point beyond which performance 
would start to deteriorate. More hidden nodes also allow the network to generalise better although 
this is achieved at the expense of the number of training cycles. It is therefore difficult to 
determine in advance the number of nodes in the hidden layer. One has to experiment with 
different nodes and choose the best performing model. Each of the 45 proposed models was 
therefore trained under a varying number of hidden units. This resulted in the design and training 
of some 500 models. 

It is appropriate at this stage to discuss the reasons for the selection of the Logicon Projection 
Network for the development of the AID models. The basic motivation behind the development of 
the Logicon Projection Network in the first place was the desire to build a faster and more 
streamlined network by combining the positive features of closed and open boundary networks. 
Closed boundary networks, eg. Adaptive Resonance Theory Networks (ART), are fast learning 
because they properly initialise the network weights and thresholds to prototypes of the training 
set. On the other hand, open boundary networks, eg. Back-propagation, minimise the output error 
through gradient descent. Combining these two features results in faster training times. This was 
favourable since it meant that the number of training cycles needed to train each of the 500 models 
need not be as large as for the standard back-propagation network. Furthermore, the Logicon 
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Projection Network has an accurate means of initialisation which reduces the possibility of 
getting trapped in a local minimum. 

The outcome of the investigation of these 500 models will be the determination of the optimal 
input features. Once these input features are determined, the selected model(s) will undergo 
further training and modifications to optimise network performance. 

Training strategy 

After a model is designed, it is trained on the training set for 513100 iterations (this is equivalent 
to 100 cycles since the training set had 5131 vectors which meant that each vector was presented 
to the ANN 100 times). As was mentioned earlier, the number of training cycles required for the 
Logicon Projection Network are generally lower than those for other Back-propagation networks. 
The choice of 100 cycles was the result of considerable investigation in which it was found that 
this number of cycles was sufficient for the network to learn the general patterns needed to 
produce the correct classification. Once the optimal input features are determined, the selected 
model(s) will undergo further training in which the effect of training cycles, initial weights, 
learning rules and transfer functions will be tested and evaluated such that the network 
performance is optimised. 

During the training process and every 1000 iterations, the trained model is tested on the training 
test set. If the classification rate on the training test set improves, the model is saved. Otherwise 
training continues. If the classification rate does not improve for any consecutive 100 tests, the 
training is stopped and the last model saved constitutes the best model for the given input features 
and ANN parameters. This training strategy, in conjunction with limiting the number of hidden 
units to the point that the network does not have the capacity to learn the specific patterns of the 
individual samples, was adopted to prevent overtraining or overfitting. This usually occurs when 
the model adjusts its parameters in such a way to memorise the training set and thus loses 
generality in classifying the training test set. 

RESULTS OF TRAINING 

The traffic flow input parameters every 20 seconds are to be classified into one of two classes or 
states (State 1 or State 2). One measure of network performance is therefore the classification rate 
which is best illustrated using a classification rate matrix as shown below. When classifying the 
incoming 20-second data, two types of error may be committed. The first is a Type I Error, where 
the model concludes that incident conditions are present when in fact they are not. This error 
basically represents the false alarm rate. The second type of error is a Type II Error, where the 
network concludes that incident conditions are not present, when in fact they are. The 
classification rate is typically a function of the average of the correctly classified states. Assuming 
no persistence checks are applied, an incident is detected when the traffic state changes from State 
1 {0}to State 2{1}. 

ANN 
Output 

o 

Desired Output 

o 1 

Type I Error 	% Correctly 

(FAR) 	Classified 
Incident 
Conditions 

% Correctly 
Classified 
Incident-free 
Conditions 	Type II Error 

VOLUME 2 119 
7TH WCTR PROCEEDINGS 



TOPIC 16 
TRAVEL SUPPLY-DEMAND MODELLING 

The classification rate matrix for a sample model comprising average measurements from dual 
stations is shown below. The correct classification of incident-free conditions is 95.7% while the 
correct classification of incident conditions is 79%, resulting in an average classification rate of 
87.4% on the training set. The corresponding Sum of Squared Error (SSE) between the ANN 
output and desired output values is 291.8. The 79% classification rate of incident conditions does 
not correspond to the model incident detection rate, since an incident is successfully detected 
when the traffic state changes from State 1 to State 2 as described previously. Furthermore, 
assuming no persistence checks are applied, the false alarm rate is taken directly from the 
classification rate matrix as 4.26 %. 

o 

0.0426 0.7906 

0.9574 	0.2094 0 

The incident detection measures corresponding to the above classification rate matrix are 
summarised in Table 7 below. These results clearly indicate the positive correlation between 
detection rate (DR) and false alarm rate (FAR). Better detection rates are achieved at the expense 
of higher false alarm rates. Furthermore, these sample results also show the benefits to be derived 
from the application of persistence tests. The application of a one interval persistence test results 
in a 67% reduction in false alarm rate at the expense of a 33% reduction in detection rate and a 
19% increase in the mean time-to-detect. 

The classification rate results and incident detection performance measures were obtained for each 
of the trained 500 models. These results are currently undergoing analysis using ANOVA 
techniques to determine whether there are any significant differences between the various factors 
(Table 6). This is needed to determine the optimal network architecture and the optimal input 
parameters, in terms of the above mentioned evaluation criteria. 

Table 7 	Sample incident detection results 

Persistence 
Test 

Detection Rate 
(DR) (DR 

(DUfI 

False Alarm Rate 
(FAR) 

Mean Time-to-detect (MTTD) 
(Minutes) 

(%) 	 ) (%) 
0 100 (6/6) 4.26 1.83 
1 67 (4/6) 1.39 2.17 
2 50 (3/6) 0.49 2.22 
3 50 (3/6) 0.37 2.55 

Key: Dl=Detected Incident, TI=Total Incidents which Occurred in Section S5-S6 

CONCLUSIONS AND RESEARCH DIRECTIONS 

Incident detection algorithms have an important role to play in freeway incident management. In 
response to the challenge to develop detection algorithms which are both reliable and quick to 
respond, recent research interest has focused on the potential of ANN models for incident 
detection. Previous studies have relied on simulated data for ANN training. In contrast, the results 
reported here demonstrate that "real world" data can be used to train ANN incident detection 
models. 

Using the results from a number of model runs, rigorous statistical analyses are currently being 
used to determine the optimal network architecture and input parameters. Once these are 
determined, the selected network will undergo further investigation, where it will be trained under 
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a variety of conditions (different initial weights, varying number of training cases, added noise 
etc.) such that its performance is optimised. 

A new validation test set of independent incidents are being compiled for validating the optimal 
network and investigating the generalisation of the results to other sections of the freeway. The 
ANN models' performance will also be compared to the algorithm currently implemented by 
VicRoads on the Tullamarine Freeway. 

ACKNOWLEDGMENTS 

The authors acknowledge the support of VicRoads for providing the data. In particular, we 
acknowledge the generous assistance of Mr. Francis Sin and Mr. Anthony Snell. 

REFERENCES 

AUSTROADS (1988) Guide to Traffic Engineering Practice, Roadway Capacity. AUSTROADS, 
Sydney. 
Ahmed, S.R. and A.R. Cook (1982) Application of time-series analysis techniques to freeway 
incident detection. Transportation Research Record, 841, 19-21. 

Cheu, R.L. (1994) Neural Network Models for Automated Detection of Lane-Blocking Incidents 
on Freeways. Ph.D. Dissertation, University of California, Irvine. 

Collins, J.F. (1983) Automatic incident detection - experience with TRRL algorithm HIOCC. 
TRRL Supplementary Report 775, Transport and Road Research Laboratory, Crowthorne, 
Berkshire, U.K. 
Cook, A.R. and D.E. Cleveland (1974) Detection of freeway capacity-reducing incidents by 
traffic-stream measurements. Transportation Research Record, 495, 1-11. 

Dudek, C.L. and C.J. Messer (1974) Incident detection on urban freeways. Transportation 
Research Record, 495, 12-24. 
Gall, A.I. and F.L. Hall (1989) Distinguishing between incident congestion and recurrent 
congestion: a proposed logic. Transportation Research Record, 1232, 1-8. 

Levin, M. and G.M. Krause (1979) Incident detection algorithms. part 1: off-line evaluation; part 
2: on-Line evaluation. Transportation Research Record, 722, 49-64. 

Lindley, J.A. (1987) Urban freeway congestion: quantification of the problem and effectiveness of 
potential solutions. Institute of Transportation Engineers Journal, 57(1), 27-32. 

Luk, J.Y.K. and F.Y.C. Sin (1992) The calibration of freeway incident detection algorithms. 
Working Document No. WD-TE 92/001, Australian Road Research Board, Nunawading, Victoria, 
Australia. 
Maren, A.J., C.T. Harston and R.M. Pap (1990) Handbook of Neural Computing Applications. 
Academic Press Inc., San Diego. 
Michalopoulos, P.G., R.D. Jacobson, C.A. Anderson and B. DeBruycker (1993) Automatic 
incident detection through video image processing. Traffic Engineering and Control, 34(2), 66-75. 

Payne, H.J. and S.C. Tignor (1978) Freeway incident detection algorithms based on decision trees 
with states. Transportation Research Record, 682, 30-37. 

Persaud, B.N. and F.L. Hall (1989) Catastrophe theory and patterns in 30-second freeway traffic 
data - implications for incident detection. Transportation Research, 23A(2), 103-113. 

Rumelhart, D.E., G.E. Hinton and R.J. Williams (1986) Learning Internal Representations by 
Error Propagation. In: Parallel and Distributed Processing. (D.E. Rumelhart, J.L. McClelland and 
the PDP Research Group, eds.), Vol. 1, pp. 318-362, MIT Press, Boston. 

VOLUME 2 121 
7TH WCTR PROCEEDINGS 



TOPIC 16 
TRAVEL SUPPLY-DEMAND MODELLING 

Ritchie, S.G., and R.L. Cheu (1993) Simulation of freeway incident detection using artificial 
neural networks. Transportation Research, 1C(3), 203-217. 

Sin, F. and A. Snell (1992) Implementation of Automatic Incident Detection Systems on the Inner 
Metropolitan Freeways in Melbourne. In: Proceedings of the Seventh Road Engineering 
Association of Asia and Australasia (REAAA) Conference, Vol. 1, pp. 337-346. 

Stephanedes, Y.J. and A.P. Chassiakos (1993) Freeway incident detection through filtering. 
Transportation Research, 1C(3), 219-233. 

122 VOLUME 2 
7TH WCTR PROCEEDINGS 


