
la • 
7'"WCTR  
SYDNEY AUSTRALIA 
1 9 9 5 

TOPIC 16 
TRAVEL SUPPLY-DEMAND 

MODELLING 

MODELLING RESPONSIVE SIGNAL CONTROL 
AND ROUTE CHOICE 

DAVID WATLING 
Institute for Transport Studies 
University of Leeds, UK 

Abstract 

The interaction between responsive traffic signals and route choice is 
studied in a simple artificial network, using a stochastic process model 
of day-to-day decisions. The long-term ("stationary") behaviour is 
seen to be potentially quite different from pseudo-stable conditions 
that prevail over a shorter time horizon, raising questions about 
conventional approaches to traffic assignment. 
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INTRODUCTION 

This paper considers the problem of modelling a traffic network in which a number of the 
intersections are signalised. More specifically, it considers the interrelationship between the traffic 
assignment problem of modelling flows in the network for a given set of traffic signal timings, and 
the traffic control problem of selecting the signal timings (which must take some account of the 
flows). 

A traffic control policy is a systematic method for selecting signal timings, given information on 
the flows in the network. Two broad types of policy may be distinguished. In fixed time policies, 
the flow information is purely historical. Typically, the timings will switch between different 
signal timing "plans" at pre-defined times of the day. In responsive policies, the timings are 
adjusted on and during each day, based at least partially on prevailing conditions, estimated from 
detectors in the road. These two broad categories include policies which control junctions in 
isolation, as well as those that are able to link information from neighbouring junctions. One of the 
best known fixed time policies is TRANSYT (Robertson 1969). A wide range of micro-processor 
controlled responsive policies are in operation or under development—see Shepherd (1994) for a 
review. 

Turning attention to the traffic assignment problem, the established methodology for modelling 
drivers' long-term choice of route through an urban road network is equilibrium assignment. In the 
simplest, steady state or static case (Sheffi 1985), we supply as input an origin-destination matrix 
(representing the average demand for travel during, say, a peak period) and a set of link travel time 
functions (representing the relationship between each link's average travel time and the vector of 
average link flows on the network). The users of the network, as represented in the OD matrix, are 
assumed to choose their routes through the network according to the generalised travel cost, 
typically a linear function of travel time and other flow-independent attributes. Equilibrium occurs 
when the demand for road usage, given by the routes drivers choose to follow, matches the supply 
of road space, represented by the link travel time functions. Such a condition prevails when no 
user can reduce their own travel cost by unilaterally changing routes. 

Traffic assignment modelling is not traditionally associated with concessions to behavioural 
considerations. In applying one of the class of equilibrium models (including extensions to the 
static case, such as dynamic equilibrium, or "taste variation" represented by stochastic or multiple 
user class equilibrium), the implicit assumption is made that drivers possess perfect knowledge of 
the traffic conditions they would encounter in the network. When applied to a network where a 
fixed time signal policy is in operation, then—provided the timings are not adjusted for a 
significant period of days—such an assumption is probably justifiable. In the case of responsive 
traffic signals, however, there is a clear contradiction: If traffic conditions really are sufficiently 
steady for the equilibrium assumption to apply, then why is a responsive policy needed? Clearly, 
the answer is that conditions do vary both between and within days, and it is the equilibrium 
approach to traffic assignment that is brought into question. (Interestingly, similar issues have 
arisen in the study of a different type of "responsive" system, namely driver information 
systems—see Watling and Van Vuren 1993). 

The purpose of this paper is to study the use of a relatively new, stochastic process approach to the 
problem of modelling traffic networks. It is demonstrated how this approach allows a more natural 
representation of responsive signal control and its interaction with route choice behaviour. A 
highly simplified example -studied previously in the equilibrium literature—is used to study the 
evolution of the route choice / control process, and comparisons are drawn with the equilibrium 
approach. 
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REVIEW: EQUILIBRIUM AND FIXED TIME SIGNAL CONTROL 

To the author's knowledge, the effect of responsive signals on route choice has not previously 
been studied. Ghali and Smith (1994) studied the effect of allowing control policies to respond to 
the iterations of an equilibrium algorithm; since real day-to-day adjustments of traffic and driver 
behaviour are unlikely to be like these iterations, it is not clear that they are modelling responsive 
control as defined here, nor do they address the objections to equilibrium discussed in the previous 
section. The interaction between static equilibrium assignment and fixed time signal control has, 
however, been considered by a number of authors. Much of this work has relevance to the 
problems studied later in the paper, and so a brief review is provided. 

Following Allsop and Charlesworth (1977), an equilibrium in the presence of fixed time signals is 
defined as a point solution (ie an assignment of flows to the links of the network, and a particular 
choice of signal timings at intersections) at which 
a) the flows are in equilibrium, given the signal timings in (b); and 
b) the signal timings satisfy the control policy at the equilibrium flows in (a). 

We shall refer to this as the (static) control/equilibrium problem. There are four aspects of this 
problem that are of particular interest: existence, uniqueness, stability, and network design. 

Existence 

Smith (1981a,b) established technical conditions on the link travel time functions and control 
policy that ensure existence of at least one solution to the controllequilibrium problem. In order to 
consider traffic signals in such a setting, Smith made a number of simplifying assumptions: 
• at any given junction, traffic streams that could otherwise conflict are not given green 

simultaneously; 
• delays at a junction are affected only by flows at that junction, and not additionally by flows at 

other junctions; 
• for given flows, average delays (over, say, a peak hour) are affected predominantly by the 

aggregate proportion of green given to each turning movement, rather than (say) the cycle 
time, stages/phases, or the absolute durations of green/red. 

Smith went on to consider the implications of his results in a simple artificial network, for three 
control policies, all of which are applied locally (ie independently to each intersection): 
a) Delay minimisation, where the green proportions are chosen to minimise total expected delay 

at the intersection, given the flows; 
b) Webster's equi-saturation, where the green proportions are chosen to equalise the 'degree of 

saturation' (flow divided by saturation flow) on each approach; 
c) Smith's PO policy, an artificial policy chosen specifically to satisfy the sufficient conditions of 

his existence theorem, whereby the green times are chosen such that the relative magnitude of 
the delays on each approach are inversely proportional to the saturation flows. 

These policies are specified more precisely in later. 

Smith showed that a) and b)—approximations to policies used in practice—can fail to satisfy the 
sufficient conditions of his existence theorem. This is not the same as saying that no solution 
exists (the conditions are not necessary), although Smith (1979a) was able to construct an example 
in which, for a sufficiently high demand, no feasible control/equilibrium solution existed under 
Webster's equi-saturation policy. 

Uniqueness 

Assuming that existence of at least one equilibrium solution is established, it would be desirable to 
prove that there is a unique such solution. This uniqueness issue, whether or not related to signal 
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control, is one that has occupied researchers for many years. The seminal papers of Smith (1979b) 
and Dafermos (1980) gave rise to what are still today the most general known sufficient 
conditions. The main requirement is that the Jacobian matrix of first partial derivatives of the 
vector of link travel time functions with respect to the vector of link flows be positive definite. 
This is satisfied if: 
• the travel time on a link is an increasing function of the flow on that link, when other link flows 

are held constant; and 
• the dominant explanatory factor in a link's travel time is the flow on that particular link, rather 

than any other link flows. 

At a signalised intersection operating on pre-specified signal timings, the second condition above 
may be violated if conflicting flows are given green simultaneously, since the major cause of 
delay to a vehicle ceding priority is the flow of traffic with the priority. If, however, we allow a 
fixed time control policy to determine the signal settings based on the (as yet undetermined) 
equilibrium flows, then even more serious problems may arise in which either condition above 
may be violated (Heydecker 1983; see also Morlok 1979, for an analogous problem in the context 
of mode choice and a demand-responsive bus service). For example, at an intersection with two 
approaches competing for green time, an increase in the flow on one approach will tend to 
increase its share of the green. Depending on the control policy, it is possible that this combination 
of an increased flow compensated by an increased green time could lead to a decrease in delay for 
that approach. The examples constructed by Heydecker (1980) and Cascetta (1989) show that 
delay functions of such a non-monotone shape may indeed lead to multiple equilibrium solutions. 

More specifically, Smith (1979a) showed that at demand levels sufficiently moderate to ensure 
existence, Webster's equi-saturation policy may lead to multiple control/equilibrium solutions, 
whereas Smith's PO policy in the same example gave rise to a unique solution. These examples are 
studied at greater length later. 

Stability 

We consider the issue of whether a control/equilibrium solution is `stable', for which a number of 
definitions are possible. In loose terms, stability is concerned with the mathematical behaviour of 
the route choice/control process in approaching (rather than at) a precise state of equilibrium. The 
most common definition, and the one adopted in the present paper, concerns properties of this 
process in a local neighbourhood of a control/equilibrium solution (following Netter 1972; Braess 
and Koch 1979; and Heydecker 1983). Namely, an equilibrium is stable unless arbitrarily small 
deviations from it may cause the flows to diverge from the original equilibrium state. The 
behaviour of the route choice/control process at non-equilibrium states is not explicitly defined by 
control/equilibrium models, except in as much as it is assumed that drivers will tend to divert to 
lower cost alternatives when they are available. It is assumed in this definition of stability that this 
diversion will happen in sufficiently conservative amounts, that the process will indeed evolve to 
the original control/equilibrium solution. Unstable equilibria are considered to be uninteresting in 
terms of network analysis, since by definition any real system would never persist in such a state, 
but could at best periodically occupy it. Note that alternative, global stability conditions were 
considered by Smith (1979b) and Horowitz (1984). 

Network design 

The classical net-work design problem (NDP) is that of designing a network that—for a given 
demand matrix—minimises total travel time/cost, subject to flows being in equilibrium for the 
design (Abdulaal and Leblanc 1979). A special case of the NDP may be considered to be the case 
where the design variables are traffic signal settings. For example, cycle times and stages may 
assumed to be fixed, and the green times are then the continuous design variables, giving rise to a 
continuous NDP. In the context of network design, there is an implicit recognition that multiple 
control/equilibrium solutions may exist, the NDP aiming to select the best of these from a system 
controller's point of view. 
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In particular, we consider the original solution technique proposed by Allsop (1974), and later 
termed the iterative optimization-equilibrium algorithm (Friesz and Harker 1985). This is a simple 
technique which, as the name suggests, consists of alternating steps of signal optimization for 
given flows, and equilibrium assignment for given signal settings. In this context, Allsop and 
Charlesworth (1977) and Dickson (1981) have constructed examples in which there are, indeed, 
multiple control/equilibrium solutions which this algorithm may approach. Dickson, and Friesz 
and Harker, have shown that although the iterative optimization-equilibrium algorithm may 
converge to such a control/equilibrium solution (and conditions on such convergence have been 
established by Smith and Van Vuren 1993), this solution may not be optimal in terms of solving 
the NDP. 

From a purely algorithmic standpoint of solving the NDP, the above criticism may be justified; 
indeed, a variety of alternative solution methods now exist. However, the (starting-condition 
dependent) solution of the iterative optimization-equilibrium algorithm probably has greater 
credibility from a behavioural point of view. The alternation between drivers finding a long-term 
optimal choice of route given fixed time signal settings, and the system controller optimizing the 
signals for given long-term average flows, is similar to the evolution of real-life systems. Such an 
approach recognises that the initial conditions (eg existing signals set by a traffic engineer from 
local knowledge and/or the current observed flows on the network) will affect the long-term 
evolution of the control/route choice process. In contrast, the solution of the NDP may require a 
routing pattern which is far-removed from current behaviour, and which may be unlikely to evolve 
from current conditions or which may only evolve over a very long period of time. 

ROUTE CHOICE AND RESPONSIVE SIGNAL CONTROL: MODELLING 
FRAMEWORK 

The discussion in the previous section, of the evolution of route choice/control processes, is an 
appropriate introduction to the modelling approach to be pursued in this paper, which explicitly 
models an analogous kind of evolution. Here, the dynamic day-to-day evolution of the traffic 
system will be considered, from some given starting condition. Models of this kind have grown in 
popularity in recent years, due to the modelling flexibility they offer (eg Alfa and Minh 1979; 
Horowitz 1984; Ben-Akiva et al. 1986; Cascetta 1989; Vythoulkas 1990; Chang-Jou and 
Mahmassani 1994; Emmerink et al. 1995). 

Such day-to-day models fall into two distinct categories, deterministic and stochastic process 
models. From given starting conditions, deterministic process models seek convergence to a single 
state of deterministic or stochastic equilibrium. In the present paper, however, we favour the 
stochastic process approach championed by Cascetta (1989). Under fairly mild conditions, 
satisfied by the particular form of model described below, Cascetta proved the existence of a 
unique long-term equilibrium or stationary probability distribution for any given system, 
regardless of the starting conditions. This may be considered the analogue of a 
deterministic/stochastic equilibrium state. 

The particular model considered here will have the following general structure (one time period 
may typically represent one day): 
1. [Initialisation] Set time period counter k=0. Initialise mean perceived costs (or flows). 
2. [Demand-side] Increment k. The current mean perceived costs, the assumed probability 

distribution of perceived costs, the assumed route choice rules and the given origin-destination 
matrix together define a joint probability distribution for route, and thence link, flows. The link 
flows in period k are random variables, following this distribution. 

3. [Control] The green splits for time period k are computed, based on the flows from step 2, 
according to the given control policy. 

4. [Supply-side] Calculate the experienced link travel times and hence costs for period k arising 
from the flows in step 2 and the green splits in step 3, according to specified traffic 
performance functions. 
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5. [Learning] Update the mean perceived costs based on the new experiences in step 4, using a 
moving average of experienced costs in at most the last m periods, for some given m. Return to 
step 2. 

In the above model framework, the evolution of the system from a given starting condition can 
only be determined according to a probability law, ie the process is indeed stochastic. Note that 
because the time period k link flows are random variables, then implicitly so are the time period k 
green splits, the period k experienced link travel times/costs, the mean perceived costs at the end 
of period k, and the initial mean perceived costs. Therefore, for example, in step 3 we could more 
correctly say `The green split probability distribution for time period k is computed ...'. Many 
contrasts may be drawn between this approach and conventional equilibrium, eg that link, route 
and OD flows are all discrete variables in the above framework, but continuous in equilibrium 
models. See Cascetta (1989) and Watling (1995) for a further discussion of such contrasts. 

Within a framework of the kind above, many types of control system may be analysed, including 
periodically updated fixed-time policies (responding to past conditions in the last n days, say), and 
responsive policies that combine, in various ways, historical information with that on prevailing 
conditions. These are interesting topics for future research. In the current paper, we shall analyse 
only a highly-responsive form of policy which takes account only of prevailing traffic conditions, 
not those on previous days. Furthermore, it is assumed that these conditions are perfectly 
monitored, although introducing some kind of "model" of the passage of information, and the 
errors and communications delays incurred, would be possible. 

More importantly, there are no within-day dynamics of any kind in the model. Instead, the "state" 
of a road on any one day ('s peak hour) is characterised by a single aggregate flow. This can be 
contrasted with most studies of traffic signals, where issues such as platooning, signal staging, 
queue dissipation, and co-ordination are crucial. In keeping with this, we assume (following Smith 
1981a,b; see earlier section) that for given flows, average delays are affected predominantly by the 
aggregate proportion of green given to each turning movement. This is not because we believe 
these dynamic factors to be unimportant. Indeed, as will be discussed in the conclusion, work is 
underway to develop a modelling framework that can take account of such factors in combination 
with the day-to-day traffic assignment problem. As we shall see, however, the interpretation of the 
output of stochastic process models is not a trivial issue, and this is the main reason for starting by 
considering a simple, within-day static case. These simplifications allow us to gain a first 
approximation to the long-term effects of signal control policies, allowing some analytical (as 
opposed to simulation-based) results to be obtained. 

EXAMPLE NETWORK AND CONTROL POLICIES 

The example network considered will be the highly simplistic one considered by Smith (1979a) in 
the context of equilibrium and fixed time policies, where the network consists of a single origin-
destination pair connected by two routes. The two routes/approaches meet along their length at a 
signalised intersection working on a fixed cycle time c. The green time proportions for the two 
approaches are chosen in response to the prevailing flows. Smith considered two control policies, 
and a third is added here. Define (for i=1,2): 

Xi 	= green time proportion given to route/approach/link i; 

vi 	= flow on link i; 

si 	= saturation flow of link i; and 

di(v,,X,) = delay on link i. 

The green time proportions are constrained by Xi  + X2 = 1—ie there is no "lost-time". For given 
flows v  and v2, the policies are: 
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(a) Webster's equi-saturation policy 

X  Y1+12 	 where y;=si  (i=1,2) 

(b) Smith's PO policy 

Choose (X1,X2) such that 

Sldl (v1,X1)=S2d2(v2,X2) 

(c) Delay minimisation 

Choose (X1,X2) so as to minimise 

2 
vidi(vd,i) 

i=1 
It is supposed that delays are given by Webster's two-term formula (for i=1,2): 

c(1-42 
 + 	Yi2  

_ 1-Yi  

Note that a number of other simplifying assumptions need first to be made, such as: the two links 
cannot have green simultaneously; the travel time along each route consists of a free-flow 
component and a junction delay component—the free flow component is assumed the same for 
both routes; and drivers aim to minimise cost = expected travel time = expected junction delay. 

Smith considered two cases, with an OD demand of p = 1/2  and 7/6. In order to compare the 
approach with the stochastic process method (which works in discrete units of demand), we shall 
scale the demand up to a value q, but in order to obtain the same effect on the delay functions, 
when substituting in the delay functions vi  is replaced by 

pvi 
vi = q 

where p is the demand level assumed by Smith. He assumed further that s i  = 1 and s2  = 2, but did 
not specify the value used for the cycle time c in his tests—which is clearly important, since it has 
an effect on the relative influence of the deterministic queuing (first) term and random arrivals 
(second) term. With a demand factor of p = 0.5, the link flows, when scaled as above, will be in 
the range 0 to 0.5. This is not an unreasonable range for flows measured in vehicles per second, 
and so it seems reasonable to assume c to be measured in seconds; a value c = 60 will be used as a 
basis for the tests. 

Before proceeding, we note two potential problems with the direct application of Smith's 
approach. Firstly, he imposes no minimum green time constraints, and so the green time 
proportions X1  and  X2  are allowed to be zero. Unfortunately, the limit, as v;  *0 and Xi  -*0, of 
Webster's delay function di(vi ,X.i) does not exist. (Allowing v;  -*0 first gives rise to a finite limit, 
whereas letting Xi  —>0 first means that di  _,00). This is not an entirely trivial issue, since Smith 
shows that under Webster's control policy, the only stable equilibria are precisely at these all-or-
nothing solutions. This problem is overcome by imposing a minimum value g on the Xi. Therefore, 
if, for example, a policy gives X1<g,  then we reset the values to: 

Xi=g 	2,2 =1-g. 

In the tests reported, g=0.01 is assumed. This is not particularly realistic, but is chosen so as to 
make the comparison with Smith's results as close as possible. Tests have indicated that the 
sensitivity to this value is not great over the range 0<g5_0.05, the findings being qualitatively the 
same. 

di(v„11, )=20 
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A second problem is the interpretation of Webster's delay formula when flows are greater than 
capacity (vi  > 	si), as may occur in Smith's second example with a demand factor of p = 7/6. 
Smith argues that such points are infeasible in `supply' terms (in any case, Webster's formula is 
inapplicable in such circumstances). This is really a limitation of `static' assignment models, 
which are unable to deal adequately with the non-transient queuing suggested by vi  > Xi  si, which 
will prevent some drivers from reaching their destination in the modelled period. Since this 
problem is not of central interest to the paper, it will be avoided by only considering Smith's first 
example, with a demand factor p = 1/2. Then: 
a) Under Webster's policy, we need do nothing further, since all demand-feasible flow allocations 

imply y i  +Y2  < 1, and hence the green times given by Webster's control method will always 
satisfy vi  < Xi  si. The minimum green time value (g=0.01) used in the tests below, together with 
the assumed values for s1, s2  and p will not cause any problems either, since all flow 
allocations then satisfy vi  < (1-g)si. 

b) For Smith's PO policy, we explicitly introduce the constraint vi  < Xi  si  during the computation 
of the Xi  (in any case, if this constraint were not included, then for any given set of flows, PO 
may not give a unique set of green times). 

c) Under delay minimisation, we proceed as for (b), the same comments applying. 

It is assumed, finally, that drivers choose between the two routes according to a logit route choice 
rule with parameter ß (>0): 

pt(cl>c2) = 	1  
1 + exp 13(c1-c2)) 

where ci  is the cost of travelling along link i. The limiting case, as ß tends to infinity, corresponds 
to a deterministic, cost minimising rule. In the equilibrium approach, the cost above is assumed 
equal to delay, and for time period k+l of the stochastic process approach, it is equal to the 
average delay over the last min(k,m) time periods. 

TEST RESULTS 

Summarising the discussion of the previous section, the parameter values assumed are: 
• Smith's scenario p = 1/2  
• OD demand of q = 100 
• Minimum green time proportion g = 0.01 
• Saturation flows si=1 and s2=2, cycle time c=60 

The learning parameter m and the dispersion parameter ß are varied (including the limiting case 
where the choice is a deterministic one). The tests consider and contrast equilibrium + fixed time 
signals with stochastic process + responsive signals. 

Due to space limitations, the techniques used to derive the results are not described (see Watling 
1995 for the details). In brief, the equilibrium results are obtained by an exhaustive search over the 
feasible region. In the stochastic process approach, the stationary distribution is found using 
Gaussian elimination as the solution to a linear fixed point problem. In addition, to produce Figure 
3, the evolution of the transient flow probability distribution was explicitly calculated. In practice, 
with larger networks and demand levels, neither of these two methods will be feasible, and instead 
we must resort to Monte Carlo simulation to generate a realisation of the process—this technique 
is studied in Figure 4. 

Webster's control policy 

Applying an equilibrium model and fixed time control according to Webster's method, three 
equilibria arise under a deterministic choice rule. Two of these equilibria are stable, falling at the 
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all-or-nothing flow solutions with maximum/minimum green. The third is an intermediate, but 
unstable, equilibrium around v1  = 33.67. As noted earlier, unstable equilibria are not considered to 
be significant in the analysis of transport networks. The stochastic equilibria, for various values of 
the choice dispersion ß, are as follows (to two decimal places): 

ß Stochastic equilibria (u/s = unstable/stable) 

0.02 56.46 (s) 
0.05 73.63 (s) 
0.10 98.40 (s) 
0.1174 98.70 (s) 
0.1175 9.38 (s) 10.46 (u) 98.70 (s) 
0.12 6.46 (s) 13.62 (u) 98.74 (s) 
0.13 0.49 (s) 0.57 (u) 2.95 (s) 17.95 (u) 98.90 (s) 
0.15 0.38 (s) 21.98 (u) 99.17 (s) 
0.40 0.00 (s) 30.67 (u) 100.00 (s) 

For high values of ß, three stochastic equilibria arise, approaching (as expected) the deterministic 
equilibria as the perception error tends to zero. For low values of ß, perception errors tend to 
completely dominate the congestion costs; in the limit, drivers chose a route purely at random, and 
we obtain a 50:50 split. At intermediate values of ß, up to three stable stochastic equilibria may 
exist. 

In contrast, we can apply a stochastic process model with responsive signals according to the same 
policy. The rather interesting case of ß = 0.13 is first examined, where five stochastic equilibria 
were seen to exist above, and apply the stochastic process approach with m=1 in the driver 
learning model. The one-step transition probability matrix gives the implied probability that the 
system will occupy any of the 101 possible states v1=0,1,2,...,100 on day k (the columns), given 
the state occupied on day k-1 (represented by the rows). In this case, the matrix has a distinctly 
diagonal form (Figure 1). 

Figure 1 	Schematic representation of one-step transition probability matrix (Webster, ß=0.13, m=1) 

The light part of Figure 1 represents cells with transition probabilities less than 0.005, and the dark 
part probabilities greater than 0.005. This illustrates that any given state occupied will tend to 
transform into a state in the same vicinity on the following day, other states having an extremely 
small probability of being reached. This is the characteristic pattern of a process which may, 
depending on the initial conditions, approach the stationary distribution at a very slow rate (see 
Watling 1995, for other examples, unrelated to signals). Note that all probabilities are in fact non- 
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zero (a feature of using the logit model) but may be extremely small—even outside the range of 
computer accuracy. For Cascetta's (1989) theory to guarantee convergence of the process to a 
unique stationary distribution, all such probabilities must be non-zero; as we see later, in practice 
this "good behaviour" may not be apparent as some transition probabilities tend to zero. It is noted 
also that increasing ß and/or m reduces the underlying day-to-day variance in flows, thereby 
causing the transition probability matrix to be more tightly focused on the diagonal—transforming 
to "far-off' states is now even more difficult. 

This matrix may be used to compute the unique stationary distribution of the process, illustrated in 
Figure 2. For the case of ß=0.13, the distribution is heavily concentrated in the close vicinity of the 
upper stable stochastic equilibrium state of the fixed-time control/equilibrium problem (the signal 
timings are also similar). The mean and standard deviation of the stationary distribution are 
approximately 98.34 and 1.76 respectively. As ß is reduced, the distribution becomes further 
spread and more symmetric, though still with a mean close to the upper equilibrium. The 
conclusion is that in the fixed time control/equilibrium problem, one of two equally plausible 
(locally) stable states of the network will prevail; whereas in the responsive control problem, there 
is ultimately only one attractive region for the system, the mean of which is closely approximated 
by one of the stable fixed-time control/equilibrium solutions. 

o 
â 

Flow on link 1 

Figure 2 	Stationary distribution (Webster, m=1) for each of the cases 0=0.02 and 0=0.13 

In the long-term, then, the nature of the responsive control / route choice process in this example is 
clear. However, when attention is directed at the evolution of the process through its transient 
stage (rather than just the long-term stationary behaviour), we begin to pose the more fundamental 
question: is the stationary distribution a reasonable characterisation of the performance of such a 
network? Returning to the case ß=0.13 and m=1—then with an initial (day 0) flow on link 1 of v1 
= 100 or v1 = 50 (or any intermediate value), less than a hundred days are required for the 
stationary distribution to be reached, to four decimal place accuracy in estimating the mean and 
standard deviation. However, with a lower starting flow on link 1, convergence may be much 
slower—eg see Figure 3 for a starting condition v1=0. In this case, nearer to 50,000 days are 
required to obtain two decimal place accuracy in the stationary mean and standard deviation. Note 
that the evolution is quite smooth—the small, local oscillations in the graph are due merely to 
interpolation between data points at 100 day intervals. Over a planning horizon of, say, 10,000 
days—around 30 years—the system is still clearly in its transient stage. Although the results are 
not given here, increasing ß and/or m only serves to emphasise this effect. 
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Figure 3 	Evolution of transient probability distribution, as measured by mean and standard 
deviation (Webster, ß=0.13, m=1, initial v1=0) 

To illustrate better what might be observed on the street from such a system, a Monte Carlo 
simulation of the process over a 1000 day period is examined (Figure 4). The trends marked 
`Webster 1' and `Webster 2' are obtained from simulations started at v1 =100 and v1=0 
respectively. Each gives rise to a (visually) stable flow mean/ variance. If more days were 
simulated, we would find—with probability almost 1—the Webster 1 series would continue with 
the same behaviour, whereas eventually the Webster 2 series would be drawn towards the Webster 
1 series, and thereafter persist with similar behaviour to the Webster 1 series. However, each of 
the two series in Figure 4 could be described as "locally stable" over the time horizon simulated, 
and because of this we will refer to them as `pseudo-equilibria'. This term is meant to convey the 
idea that we have apparently reached a stationary condition of the system. It is also appropriate 
because, over the period simulated, the two series give mean flows close to the stable stochastic 
equilibria of the fixed time control/equilibrium problem. It is clear from Figure 2, though, that 
only the Webster 1 series characterises the true stationary behaviour. Repeating these tests for fifty 
random number seeds from an initial condition v1=0, after even 106  days six of the simulations 
were still apparently stable around a mean link 1 flow of 3.2-3.3, with the remaining simulations at 
various stages on their path to stationarity. These tests indicate the care needed in applying Monte 
Carlo based stochastic process models. At the very least, sensitivity analyses to the seed value and 
starting conditions need to be carried out. 

Smith's PO policy and delay minimisation 

In contrast with Webster's policy, when applied in a fixed time control/equilibrium framework, PO 
gives rise to a unique, stable deterministic equilibrium solution (v1 =0, A,1=0.37), and unique 
stochastic equilibrium for all values of B. This latter closely approximates the long-term average 
behaviour predicted by a responsive control/stochastic process approach. The stationary 
probability distribution corresponding to ß=0.13 and m=1 is illustrated in Figure 5. As ß is 
increased, this distribution becomes more concentrated and shifts to the left—notably, the 
complete opposite of Webster's. In contrast to Webster's policy, with PO a rapid convergence to 
the stationary distribution occurs, regardless of the initial conditions (see Figure 4 for an 
illustrative simulation). The one-step transition probability matrix (Figure 6) has a very different 
form to that under Webster's policy, with a single attractive region into which any state is likely to 
transform. 
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Figure 5 	Stationary distribution (PO, 8=0.13, m=1) 

The delay minimisation policy gives rise to extremely similar behaviour to Webster's equi-
saturation, which is probably not surprising given that the latter is often considered to be an 
approximation to the former. In particular, the comments earlier regarding the stationary 
distribution, pseudo-equilibria, and the effect of the initial conditions on convergence rate were 
found equally to apply. Although it was not the purpose of the study, we note finally that, from a 
system controller's point of view, both Webster's policy and delay minimisation were 
considerably superior to P0. Whether we consider either of the pseudo-equilibria or the stationary 
position, the day-averaged total travel time under the former policies was significantly smaller 
than that from P0, although with a marginally larger day-to-day variance. 
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Figure 6 	Schematic representation of one-step transition probability matrix (PO, 6=0.13, m=1) 

CONCLU~O~CI 

It has been argued that the assumptions of equilibrium assignment models are inappropriate in 
networks where responsive control systems operate. Using a more general, stochastic process 
model of the day-to-day evolution of the responsive-control/route-choice process, a simple 
example—previously considered in the literature—was studied. Applying either the Webster equi-
saturation control policy or delay minimisation, it was seen that: 
a) In the long term, a single, unimodal stationary probability distribution of flows on the network 

will ultimately prevail, from arbitrary starting conditions. 
b) The related equilibrium/fixed-time control problem was seen to have two stable equilibria, one 

of which approximates the mean of the stationary distribution above. This relationship held 
under a variety of behavioural specifications (viz. m and ß). 

c) Examining Monte Carlo simulations of the responsive-control/choice process, in the shorter 
term—which could mean as long as thirty years!—pseudo-stable but non-stationary behaviour 
may persist for long periods of time. This was seen to be due to implied transition probabilities 
between system states being extremely small. 

d) Different pseudo-stable conditions may be reached over such a time horizon, dependent on the 
initial conditions and possibly the random number seed. 

e) Smith's PO control policy was seen not to suffer from these problems, though it demonstrated 
an inferior performance from a system controller's point of view. 

The simplistic nature of the test model and network make these findings suggestive of future 
research, rather than conclusive, but the simplification has allowed analysis which avoids Monte 
Carlo simulation. Although simulation is likely to be the only feasible approach for realistic 
networks, an analytic approach provides a better basis for understanding the complex behaviour of 
stochastic process models, and indeed day-to-day evolutions in real-life. Thus, it is suggested that 
further such analysis of simple networks should be carried out, studying examples where bimodal 
stationary distributions prevail and transitions between attracting regions occur less rarely, the 
effect of different behavioural models, or the impact of using part-historical information in the 
control response (see Watling 1995, for a coverage of some of these, though not in relation to 
signal control). It is noted that studying larger networks with overlapping routes, or allowing 
drivers or the control system to use more distant historical data, will tend to dampen the level of 
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variability, leading to a number of small transition probabilities, and hence more problems of the 
types (c) and (d); ie intuition suggests that these issues are not artificially created by the example. 

In parallel, it is planned to study larger, realistic networks, and more detailed traffic/control 
models, using a simulation framework currently under development (Liu et al. 1994). This 
approach combines a detailed representation of driver behaviour, as this evolves within and 
between days, with a detailed traffic simulation of individual vehicles and complex signal policies. 
It is therefore possible to study the performance of signals responding dynamically to serve a 
given demand, in the context of the longer-term evolution of driver choices, as well as studying 
novel policies such as P0. Strategies for dealing with the problems identified in (d) may be 
investigated, such as: starting the simulation from current conditions/signal-timings, when testing 
hypothesised "do-something" schemes/ policies; and using "common random numbers" to reduce 
the impact of the seed value (Rathi 1992). More generally, the whole philosophy for evaluating 
policies/networks may be re-evaluated—in particular, should our results be explicitly time-horizon 
specific? 
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