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Abstract 

This paper considers a new approach for modelling the traffic flow in 
dense networks by using the boundary element technique (B.E.M), 
which needs information data from a very limited number of points 
from the network. The purpose of this communication is to provide a 
mathematical foundation for the study of this approach. 
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INTRODUCTION 

Most cities in the world share a common problem: urban traffic congestion. To analyze and 
quantify this problem several techniques have been available during the last decade: from simple 
mathematical models to the most thorough modelling techniques using highly detailed network 
systems subjected to dynamic assignment under random data. This paper considers a new 
approach for modelling the traffic flow in dense networks by using a sophisticated mathematical 
continuum model, which needs (as input) information data from a very limited number of points 
from the network. The purpose of this communication is to provide a mathematical foundation for 
the study of this approach. 

We postulate that this methodology can speed up the computation of relevant values concerning 
the time evolution of traffic on a city network. The technique is very promising and it 
complements the traditional procedures based on the modelling of a city by networks made of 
nodes and links. 

The modelling of traffic systems is, at present, mainly based on discretizing the region to be 
analyzed by a discrete network. This approach might be valid and convenient for the study of not 
very extensive regions or/and not very road-dense zones. In case the real road and street network 
are complex (the number of roads is large enough, the density of roads impedes a proper and 
reliable modelling, the origins and destinations are difficult to be precisely pointed out, etc.) the 
network theory method would not be an adequate tool. The errors made in the modelling of the 
network itself (roads not considered, missing interconnection, crossings not well defined, etc.) will 
introduce a savage uncertainty on the results obtained by solving problems based on this model. 
Moreover, the more precise the model is defined the longer its size becomes, making the 
algorithms used for the solution impractical from a computational point of view. In these cases it 
might be more convenient to modél the region to be studied under a continuum representation. In 
the last 25 years several researchers have proposed different methods for dealing with the traffic 
distribution in dense urban regions. We should acknowledge the works by Vaughan (1987) and 
Newell (1980). Most of these methods were only applied to simple geometries that are far away 
from a practical use, although they defined the foundation for further research. 

The purpose here is to develop a practical method to solve problems of continuum modelling in 
traffic networks ready to be implemented for obtaining the solution of practical scenarios. 

The basic of our model is presented in the next section, where the constitutive equations of a 
continuum model are described. The following section constitutes the core of the technique 
proposed. The last two sections indicate the way a real area with multicommodity flow should be 
dealt with. 

BACKGROUND 

Basic concepts on traffic flow 

The first investigators who formulated the equation for traffic flow, from a macroscopic 
continuum modelling point of view were Lighthill et al. (1955). The only equation formulated in 
this model is that of continuity in a monodimensional space: 

dK + dQ -  dt dx (1) 

which expresses the balance between the number of vehicle's growth rate (traffic density or 
concentration K) in a road section, the net flow (Q=K V) across the section and a generation 
function (O ). In this model, the Simple Continuum Model, the mean space speed is supposed to 
be dependent on traffic density V = Ve(K). 
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This model is clearly a very simplistic modelling of traffic flow that does not allow for speed 
fluctuations around equilibrium values, since it supposes that the speed depends on the density, 
and which allows for appearing shock waves, implying instantaneous speed changes. 

A later modelling, the Payne model (1971) has been by far the most used among traffic scientist. 
This is a second order model that allows for fluctuations in the vehicle speed by introducing this 
variable (V) as an unknown into the model. In order to do that the momentum equation is needed: 

dV +v dV = Ve-V v 1 dK 
dt ax T TKdx 

where T is the driver's reaction time, v is an anticipation coefficient, Ve the equilibrium speed 
and x and t indicate space and time respectively. 

It has been proved, Del Castillo et al. (1994) that "the capabilities of the Payne model to solve 
compression shock waves in traffic flow in a continuous manner is limited" and that "the results of 
the Payne model may be fairly well approximated by those of the Simple Continuum Model". This 
assertion takes place for the cases in which the characteristic variation time of the traffic flow 
conditions is greater than the reaction time and, then, the relaxation term in (2) may be neglected, 
and the Payne model simplifies to the Simple Continuum Model. As stated in Del Castillo (1994) 
"the last condition is likely to be met in those situations where the changes of the traffic state take 
place slowly in comparison with the time required by the drivers to reach their desired speed. But 
those situations are the common situations, because the reaction time of drivers is small, namely 
about 0.6 sec. Thus, the differences between the solutions of the revised Payne model and those of 
the simple continuum model should be irrelevant in all realistic situations". Under the former 
hypotheses the adoption of the Simple Continuum Model (1), with a specified volume-speed-
density relationship, is not a bad choice. 

Since 1925, with the work of Schaar (1925), several volume-speed-density relationships have been 
proposed, although the most used are those authored to Greenshilds (1935), Greenberg (1959), 
Underwood (1961), Drake et al. (1967) and Pipers (1967) (see reference Del Castillo et al. 
(1995a)). The acceptance, by the scientific community, of a general analytical expression for the 
speed-density relationship is still an open problem. The properties (Del Castillo et al. (1995a, 
1995b)) that this expression should hold impose such severe restrictions that the finding of such 
curves it is not an easy task (the formerly named relationships do not satisfy at least a couple of 
needed properties). 

An attempt to draw some light on this open problem is the paper by Del Castillo et al. (1995b), in 
this work a functional form for the speed-density relationship is presented which includes several 
examples of generating functions contrasted with real experimental data. In that investigation the 
authors claim that the parameters that characterize the equilibrium traffic flow relationship are the 
jam density (K), the kinematic wave speed at jam density (Cj), both of them considered as traffic 
flow constants and the free flow speed (V f) which varies over a much larger range as it is strongly 
dependent on road (street) characteristics. 

From this work a family of speed-density expressions has been proposed: 

u=uf[1—F(t%)l, t%=u (k -1) 	 (3) 
f 

where 

u= V k=  C = dQ 
Ci Ki ~ dK 

and F(29) is the generating function. Some expressions for the generating function are published 
in Del Castillo et al. (1995b). 

From (1), (2) and (3) and the non-dimensional time 2: = tjCiIKi the following model is defined: 

(2) 
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dk(x,  + aq(x> ~) -  1  O(x, T) az 	ax 	K;ICiI 
q(x, r) = k(x,?;)u(x, r) = uf (1- F( 6)) (5)  

The above expressions can be extended to two-dimensional regions as it is postulated in the next 
section. 

Basic concepts on two dimensional traffic flow 
The basic concepts are based in the works of Dafermos (1980) and Newell (1993) on dense urban 
street grids. In traffic theory we named dense grids to a grid of roads and streets packed enough to 
assume that the spacing between them and the length of any one of them are small compared to 
the whole region analyzed. Such a grid can be approximated by a continuous space with 
appropriate characteristics. On such a continuous space the orientation of roads will depend on the 
zone being observed. Thus, if a zone has roads in almost any orientation, this zone will be 
considered an isotropic- road area, on the other hand if a zone has roads orientated in almost only 
two directions this is to be assumed an orthotropic-road zone. In general, any spatial region can be 
divided, according to the orientation of the roads and streets, into different zones, with isotropic, 
orthotropic or anisotropic geometric characteristics. 

Let S2 denote the under considered urban street grid that occupies a region in E2; where E2 stands 
for the two-dimensional Euclidean space. Let x = (x, y) be the position vector of a point in E2. In 
an isotropic-road zone E2 the traffic flow of a single-commodity, only one pair O/D, would satisfy 
the conservation equation: 

a0(x>t) + 0 • f (x,t) = p(x,t), dt 

where f(x,t) stands for the traffic flow (vehicles per unit of time and unit of length) vectorial 
function (fx, fy), p(x,t) the generating function (p(x,t) will be positive if flow is originated at x 
or negative when it is absorbed) and (1)(x, t) the traffic density or concentration (per unit of 
surface area). 

By presuming that the traffic flow is not only function of velocity and density but function also of 
density gradient, one can write: 

f (x, t) = —µV 0(x, t) + u(x, t)0(x, t) 

u(x, r) = [ux(x, z), uy(x, r)], 

ux(x, r) = of Ø(x, r)(1 — F x(t9)), 
	 (7) 

uy(x, r) = of 0(x, r)(1 — Fy( 6)). 

Variational formulation 

If we assume that a vehicle moving from point xl to x2 incurs a travel cost that depends upon the 
traffic flow, we are taking into account the network geometric characteristics and the congestion 
effect: 

=c(f,x) 

Under this assumption, a user vehicle traveling along a path 1 will incurs a cost given by: 

cr = f c(f,x)dl = f f c(f,x)df, 0 

(6)  

(8)  

(9)  
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where c(f,x) is the travel cost used in the formulation of equilibrium assignment problem. 
Extending the travel cost ci to all possible paths inside region S2 the total uni-commodity travel 
cost for that region will be formulated as (Newell (1993)): 

f 
T(f) = f [f c(f,x)df]dA 	 (10) 

SI0 

The solution of the assignment problem sought will be obtained minimizing (10) subjected to 
restrictions (6), (7) and boundary conditions on S2, where 52 represents the region analyzed, A its 
surface, c(f ,x) the cost function of a trip which depends on the traffic flow level in the 
surrounding and f the traffic flow level itself. 

The cost function c(f,x) will depend on the location point x into the region S2 and on the flow 
traversing that point f (x, t) in such a way that it can be expressed as follows: 

c(f,  , x) = a(x) + bl f (x)I, 	 (11) 

where the flow function appears as a non-negative term since c(f, x) should always be a non-
negative function. 

FORMULATION OF ONE-COMMODITY TWO-DIMENSIONAL FLOW 

Substituting (7) into (6), the following transient equation is obtained: 

d0(x't) ttV20(x,t)+V[u(x,t)0(x,t)]=p(x,t). dt 

As the velocity u varies in space, assuming that this variation (û) is small in the neighbourhood of 
an equilibrium speed n, we can write: 

u = u +u. 	 (13) 

Substituting (13) into (12), the resulting expression is: 

ItV20 — u0O = 	— p+V(u4), 	 (14) 

where for the sake of brevity the dependence on spatial variable x and time t is taken for granted. 

Applying a weighted residual technique to the above equation over the whole region 0, using as 
weighting function 1/f the fundamental solution of the steady-state equation (see Appendix): 

µ02 yî+uoyi=-8(), 	 (15) 
we obtain: 

f (µc2¢ - û00) yidS2 = f [ ~ - p +O(uO)] yidS2. 
s~ 	 sz 

(16) 

Integrating the left hand side of the former expression by parts twice, taking into account (15) and 
that Du = 0 , it yields: 

an y i ~~)ar+ 	do —p+0(u~)] tVdS2, 	(17) 
r 	r 	n 

(12) 
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where fin = u • n, being n the unit outward normal vector to r, being F the boundary of Q. 

Integral equation (17) is valid for any point within the domain ( e Q). Applying the above 
equation to any point on the boundary (F), the following expression is obtained: 

c()O()+µ f (~ an- V~ ~ )dF + f orri dr=-5{ -p+0(uO)]yrdS2, 	(18) 
r 	 r 	 tz 

where the integrals are defined in the sense of Cauchy Principal Values and c() are given by 

ZR , being (9 the internal angle at point 	in radians. It is noteworthy that all integrals, except the 
one on the right hand side of (18) are boundary integrals. If the domain integral is transformed into 
boundary integrals, the numerical evaluation of preceding equation is facilitated. In what follows 
this transformation is undertaken. 

Domain integrals 

Domain integrals of time derivative 

To obtain a boundary integral corresponding to the derivative respect to time, the following 
approximation is assumed: 

0 _ 	_ 	fk(x)a(t), 	 (19) 
k=1 

where the above series involves a set of known functions fi that depend only on geometry and a 
set of coefficients that depends only on time. Under this assumption, the first domain integral of 
the right hand side of (19) becomes: 

K1 
f Ô 

ât yi dS2 = /MS  fk VAL 
S2 	 k=1 S2 

By choosing each function fi in such a way that they are particular solutions of the equation: 

/.tV2 S k-i10l;k = fk , 	 (21) 

expression (20) yields: 

4-d yi c15-2= ak f (µ02 - UV çk ) yi dSZ 
k=1 4 

(22) 

Integrating by parts in a similar way to obtain (18) from (16), expression (22) gives: 

0 	Ki 

aT ylds2=~ak[-c( )Çk( )-,tt.f ( Sy k dn - y! 	d )dr- f Cky/  if„ dI ]. 	(23) 
S2 	 k=1 	 r 	 r 

Domain integrals of spatial distribution 

The simplest way to compute this domain integral is by subdividing the region into a series of 
internal cells a. The integration over each cell is then performed by a numerical integration 
similar to the finite element method: 

(20) 
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C 	 C 1 
f pVidS2 = ~ f pyrdS2~ _ ~~ ca(ptV);52,, 	 (24) 
âz 

 

C=1 QC 	 C=1 1=1 

where C is the total number of cells describing the original domain S2, Wt are the Gauss 
integration weights, (ptlr)i the value of function pyr at integration point i on each cell, I the 
number of integration points on each cell and S2c the area of cell c. 

In order to transform the domain integral into a boundary integral, the following approximation is 
postulated: 

K2 
p(x) 	Sk(X)ßk, 

k=1 

where the functions sk(x) are particular solution of the equation (21), substituting Çk by ) k and 
fk by Sk . 

In an analogous manner to the former case, this domain integral becomes: 

Kz 
f pyrdd2=lßk[ — 	 f ()tk an — W ~nk)dI — f Aktynndl]. 	(26) 

k=1 	 r 	r 

In case concentrated sources are present at certain points E , (E =1,...,P), the function p at these 
points becomes: 

P(X) = pet 8(e), 	 (27) 
e=1 

where pe is the magnitude of the force, 8(E) is a Dirac delta function and the domain integral 
yields: 

P 
f PfdS2 = ~ pe ),v(E)' 	 (28) 

E=1 

Domain integrals of divergence 

In this case the approximation assumed is: 

Ks 
V(4) = ~,rk(X)7(t), 	 (29) 

k=1 

where the functions rk are particular solutions of the equation: 

/./V2xk — UQxk = rk. 	 (30) 

From (29) and (30) the domain integral becomes: 

f 0(û0)VrdS2= ~Yk[- c(~)iik(y) — µf (%k an —yr ank )dI' — f xk yrund ,l]. 
S2 	 k=1 	 r 	 r 

(25) 

(31) 
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Boundary integral equation 

From expressions (18), (23), (26), (28) and (31) the following integral equation is obtained: 

	

c()0()+u f0 awdr-µ f 	dr+ f ovr,,,dr= 
r 	r 	r 

ak[c()Çk()+µ f 4-x ~dr µ  W d~~Adr+ f Çkvii7„dr) 
R=1 	 r 	r 	r 

—II(' ßk lc()/1A()+µ f Ak —ddr -µ f v,tdr+ f AA yii7„ dr1+~,P£v/(E) 
x=1 	 r 	 r 	 r 	 e=1 

+17~1c()xr()+µ f xr ~~dr-µ f vi a~A )dr+ f xA vr.W„dr] 
k=1 	 r 	r 	r 

For the numerical solution of the problem, equation (32) can be written in a discretized form, 
analogous to the finite element and boundary element methods, in which the integrals over the 
boundary are approximated by a summation of integrals over individual boundary elements, 
abstracted to the following simple expression: 

w() = f f (x, ) g(x, )df = 	f f(x, )g(x, ) dre, 	 (33) 
r 	 e=l re 

where E stands for the number of boundary elements on which the contour is discretized. 

The variation of generic function f(x, ) within each element is approximated by interpolating 
from the values at certain element nodes (see Figure 1). 

(32) 

internal point 

Discretization 

/----~\ - l4 
/ fl 	\̀ ǹode N node 1 node 2 

I 	f2) 
\ 	 / 
\ 	f 3/ i 

parabolic boundary element 

Figure 1 	Boundary discretization and interior points definition 
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In case parabolic elements are used the following expression applies: 

(fly 
f(x, ) = ((D1,432,03) • f2 , 	 (34) 

\f 3/ 

where ti are quadratic interpolation functions. Substituting (34) into (33) one gets: 

(fly 

W()= 	(ale ,a!,a:) f2 	 (35) 
e=1 	

\f3/e 

where aie = f cDig(x, )dr. 
Fe 

Following the above philosophy, the left hand side of equation (32) can be discretized, for a given 
boundary node i (;) as follows: 

/01\ 	E 	 ,qi \ 
ci0i+1(hé,he ,he )• 02 — 	(ge ,gé ,ge)• q2 , 	 (36) 

e=1 	 a=1 
\!3/e 	 \q3 /e 

where scripts 1, 2, 3 identify nodal points on each element and 

he = µ f ti (In + µ`) d, 
re 	 (37) 

ge=it f 	d  
Fe 

The contributions of adjoining elements to each nodal point have to be added up, getting (36) into: 

E a 
Ci (pi+ 	H;e$e an ' 	 (38) 

e=1 	a=1 

Dealing with the terms of the right hand side of expression (32), in an analogous manner ,this 
equation yields: 

e=1 	e=1 
KI 	E 	 E 	

altIk 1 ak[Ci 1~/ki + I Hie~ke —I Gie an 
k=1 	e=1 	e=1 	e 
K1 	E 	 E a~ 

[
E
~ —1ßk[Ci/~ki +I Hie~ke — EGie 	]+~,PeV%(E) 

k=1 	e=1 	e=1 	an e 	e=1 
K1 	E 	 E axk 

+1,yk[cixki + I H;el~ke — ~ G. 
all 

k=1 	e=1 	e=1 

If the boundary elements in which the contour is discretized include N nodes (see Figure 1), a 
collocation technique of equation (39) applied to these nodes will yield a system of N equations of 
the form: 

e 

(39) 

] 
e 

VOLUME 2 161 
7TH WCTR PROCEEDINGS 



TOPIC 25 
URBAN AND LOCAL TRAFFIC MANAGEMENT 

- 
 G1

Kl 
-4: = ak[HKk - G 

k=1 
K2 

- /3k[HA.k -G  ]+d, 
k=1 
K3 

+ 7k[Hxk -G ank ] 
k=1 

where H and G are NxN matrices and 0, , çk, an , Ak, w , xk, ân ,u are vectors of length N. 
The ci values on equation (36) have been incorporated into the diagonal coefficients of matrices 
H. 

Matrices H and G are evaluated numerically using a Gaussian integration. The diagonal 
coefficients of matrices H can also evaluated through: 

=-~H;e, (l#e), 
e=1 

(41) 

as the solution of a system with a constant value of along the boundary can only be obtained if 
matrix H is singular. 

Assuming that the number of terms in expansion (19) and (29) coincides with the number of 
boundary nodes, one can write: 

= Fa, 0(û0) = Rß, 	 (42) 

where 4, DC, V(uO), (3 , are vectors of nodal values. 

Applying (25) to N boundary nodes and M internal points (K2=N+M) we can write p = Sy. 
Interior points are defined in order to obtain a more accurate solution. These M points do not form 
part of any element or cell, only the coordinates are needed as input data. 

Substituting (42) into (40) results in the following system of equations: 

H4 -Gân=[HÇ-Gân]F' 

- [HA, -G an ]S 'p + d , 	 (43) 

+ [Hx - G an]R-'V(4) 

and calling 

B=-[HÇ- Gân]F-' 

d=d-[Ha,-Gan]S-'p+[Hx-Gân]R-'0(û0), 

expression (43) results in: 

B(i)+H(1)=Gn+d. 

In order to solve system (45), any standard direct time-integration scheme can be used to obtain a 

solution. A valid scheme would use a linear approximation for the variation of (0 and q = 	: 
an 

(40) 

(44)  

(45)  
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0 = (1— e0)4)„, + °
4m+1 

q=(1—eg)gm +90g'"+' 

(i)  - Qt (0m+i _ 4),,, t 
(46) 

where 00 and Oq are parameters of the approximation. Substituting (46) into (45), the following 
expression is obtained: 

(1B+9¢11)tp„i+1 — OgGq"+1 =[LB— (1 — e4)x]4)m +(1-6q)Gq1"+d. 	(47) 

The right hand side of the above expression is always known, since it involves values that have 
been calculated previously or which have been specified as initial conditions. From the boundary 
conditions at time (m + 1)At, the values of 4) are prescribed over part of the contour (To) where q 
are unknown, along the rest of the contour (Tq ) occurs the opposite; hence there are only N 
unknowns in the system (47). The time step value At should be small enough to ensure numerical 
stability. Adequate values for 00 and 9q are 0.5 . 

Introducing the boundary conditions into (47) and arranging the system by moving known terms 
to the right hand side, we can write: 

Ax = y, 	 (48) 

where x is a vector of unknown boundary values of 4) and q, and y is a load vector. This system 
can be solved by using a standard direct procedure like Gauss elimination. 

Note that the matrices H, G, R, and S depend only on geometrical data and they need to be 
evaluated only once. 

URBAN AREAS WITH DIFFERENT ZONES 

When the urban area under study is composed of different regions or zones, a subregion technique 
may be applied. 

In most situations the area analysed involves a number of contiguous zones of different 
characteristics. In general, there will be a number of zones Z1  (I=1,...,L), each one enclosed by its 

boundary F1, (see Figure 2). 

Figure 2 	Urban area with different zones 
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The common interfaces of any pair of zones are forced to have the same traffic density 4) , 
moreover the flow should ensure continuity across the shared contour. 

Dealing with each zone as an entirely independent entity, an assembly process will provide a 
system of equations similar to (48) involving only boundary unknowns. 

URBAN AREAS WITH MULTI-COMMODITY TRIPS 

Expression (47) and (48) are only valid for problems with only one pair origin-destination. In case 
several pairs O-D are present, case that corresponds to real situations, we could write down a 
system of equation (given by (47) or (48)) for each pair O-D: 

A1xt  = y1  pair O— D identified as 1 
A2x2  = y2  pair O— D identified as 2 

Aix•  = y, pair O— D identified as j 
	 (49) 

AJx j  = y j  pair O— D identified as J 

These correspond to an unreal uncoupled system of equations. In real situations total densities and 
flows are related through a similar matrix equation: 

Aixi  = yi , 	 (50) 

where xt and yt are the unknown and known vectors respectively, both of them involving total 
densities and total flows. 

Solution of (49) and (50) will assign values to the boundary unknowns. Once this step is taken, we 
can continue further evaluating densities and speeds for selected internal point by using expression 
(17). 

Although we have not presented the formulation for orthotropic zones, the extension of the above 
formulation to this case is almost immediate. 

URBAN AREAS WITH A MAIN ROAD NETWORK 

During the process of modelling urban areas it is always frequent to find out that there exists , at 
least , tow kind of roads: main roads and secondary roads. With the technique presented on this 
paper one can easily model the secondary road network but not the primary (as long as it is not 
dense enough), but we can in all cases model the main road network as a discretized network 
(under a classical point of view) connected to the continuum model through specific points 
(source-sink points). These points will be considered as concentrated sources in the continuum 
model. The inclusion of the mathematical model of the discrete main network coupled to the 
system (49) allows the solution of the whole real problem. A scheme of this procedure is depicted 
in Figure 3. 

CONCLUSIONS 

On the basis of the model that have been developed in (6) and (7) a completely new approach 
based on the technique of Dual Reciprocity Boundary Element Method (Partridge et al. (1992)) for 
the analysis of two-dimensional traffic flow has been presented. Although this model contains 
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several hypotheses that might be under a ban it outlines a new horizon for dealing with dense 
grids. 

Figure 3 	Modelling process for urban regions 
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APPENDIX A 

Approximation functions 

An adequate expression for the approximation function of (19) is: 

fk(x) = 9µr - 3r[(x—xk)i x+ (y— yk)ûy], 	 (A.1) 

where r is the distance between pre-specified points (xk, yk) and boundary nodes (x, y). The 
above expression is obtained by substituting tV = r3  into (21). Besides, the derivative with respect 
to normal is: 

an =3r[(x—xk)nx+(y—yk)ny] . 

For functions rk and Sk used in the approximations of 0(û0) and p(x), respectively, the series: 

1 + r + r2  + • • • + r"' , 

could be used, although using 1 + r would be the simplex alternative. 

Fundamental solution 

The fundamental solution for the steady-state convection-diffusion equation (15) is given by: 

_ u_r 
vo,
) = 27tµ e 

2p [-1Ki(µr) dr – 2µ Ko(µr)], 

where KO and Ki are Bessel functions of second kind of order zero and one, respectively. 

(A.2) 

(A.3)  

(A.4)  
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