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Abstract 

A kinetic traffic flow model, where fluctuations as well as the effects 
of on-ramps and off-ramps are taken into account, is proposed. Based 
on this model, random processes of a spontaneous formation of traffic 
jams both in an initially homogeneous and in an inhomogeneous 
traffic flow are investigated. 
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INTRODUCTION 

Numerous experimental investigations of traffic flow have shown that traffic jams can 
spontaneously appear (Treiterer, 1975; Leutzbach, 1988), when the density of vehicles in traffic 
flow becomes relatively high. The experimental features and characteristics of traffic jams have 
recently been found in Kemer and Rehborn (1996). 

The phenomenon of "phantom traffic jam" in a homogeneous traffic flow may be explained by the 
local cluster effect (Kerner and Konhäuser, 1994). The local cluster of vehicles is a localized 
structure in traffic flow which can be formed in the initially homogeneous traffic flow, if both the 
density of vehicles in this flow exceeds a boundary (threshold) density and a localized fluctuation 
appears which amplitude exceeds some critical value. The results of the theory of traffic jams 
obtained in Kerner and Konhäuser (1994) based on a macroscopic traffic flow model have been 
confirmed by the investigations of microscopic traffic flow models (Schreckenberg et al. 1995; 
Nagel and Paczuski, 1995; Bando et al. 1995). 

An ideal homogeneous traffic flow is obviously a hypothetical state of traffic flow: Different kind 
of random processes which for example are linked to a lane changing or to entering or exiting of 
vehicles to on-ramps or off-ramps, etc., may have a considerable influence on both a spontaneous 
appearance and properties of traffic jams. In this article a kinetic traffic flow model, where 
fluctuations as well as the effects of on-ramps and off-ramps are taken into account, will be 
proposed. Based on this model, processes of a spontaneous formation of traffic jams and their 
properties both in an initially homogeneous and in an inhomogeneous traffic flow will be 
investigated and compared. 

KINETIC MODEL OF TRAFFIC FLOW 

Basic equations 

In a kinetic approach (Prigogine and Herman, 1971; Payne, 1971; Whitham, 1974; Leutzbach, 
1988; Kühne, 1991), the kinetic model of traffic flow under consideration is described by the 
continuity equation: 

the equation of motion (Kerner 

P

and the boundary conditions: 

q(0, t) 

In (1)—(3) p(x, t) is the 

= q(L,t), v(0,t) 

density (0 < 

q(x, 

and Konhäuser, 

[at+vaX]=p[V(p)—v]—co 

a p+ aq — o at 	ax 
1993): 
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aP+axz 

= v(L, t) and w(0,t) = w(L, t) . 

p _< 1) and v(x, t) is the average speed (v >_ 0) , 

av 
w = 	; 

t) = p(x, t) • v(x, t) 
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is the flux of vehicles in traffic flow; V is a safe ("maximal and out of danger") speed which is 
achieved in a time-independent and homogeneous traffic flow. In (1)—(5) v, V and co are 
measured in units of .f/ti , the length in units of , the density p in units of p (p is the maximal 
possible density of vehicles on the road; for n-lanes road (3 = nra , where â is an average length 
of vehicles), the time in units of ti , the value w in units of 1/Tt , the flux q is measured in units of 
pt , L = µp ~~ ; 't is the characteristic relaxation time of the speed v to the "maximal and 
out of danger" speed V; V(p) is a monotonous decreasing function of p , ie., its derivative is 
(Prigogine and Herman, 1971; Whitham, 1974; Leutzbach, 1988): 

(p)-d)
<0; 	 (6) 

dP 

i = const; co = const ; (Payne, 1971; Whitham, 1974); 1.1. = const (Kühne, 1991); L is the 
length of a road. 

The equation of motion (2) formally follows from the Navier-Stokes equations, or to be more 
precisely, from the "Navier-Stokes-like" equation for traffic flow (Kerner and Konhäuser, 1993): 

p i ~ pLav +v v]_ X— a + a µav 
at ax 	ax ax  ax, (7) 

where X = p • (V(p)— v)/ti (Payne, 1971; Whitham, 1974; Leutzbach, 1988; Kühne, 1991) 
represents the sum of all inner "forces", which appear due to interactions between individual 
vehicles. The terms on the right-hand side of Equation (7) look like the forces which enter the 
Navier-Stokes equations. However, in traffic flow the nature and the meaning of these terms are 
completely different compared with classical physical systems. In the latter systems for example 
the pressure p as well as the viscosity p. appear due to the variance of the velocity distribution, ie., 
due to the temperature of a gas. In traffic flow, contrarily, the terms ap/ax and 

a/ax • (p. • av/ax) are even present when the variance of the speed distribution of vehicles were 
zero. These terms are present due to the perception, decision making and action of drivers in the 
presence of nonhomogeneities in the density and the average speed of vehicles. Therefore, both 
terms ap/ax and a/ax • (p.. av/ax) can be considered as some kind of anticipation factors. For 

example the term —ap/ax causes acceleration of drivers if the density p decreases and slowing 
down when the density increases (eg Kühne, 1991). This means that the gradient of the pressure 
ap/ax should have the same sign as the gradient of the density: ap/ax = co' aWax , where 

cô > 0 . The value cô may be, however, in two limit ranges of the density nearly equal zero 
(Kerner et al. 1995): (i) when the density everywhere on a road is so low that all drivers move 
practically with their "free speed" y r and, therefore, do not react on a change in density; (ii) when 
the average speed due to very high density is nearly zero and drivers cannot move even if the 

gradient of the density is not equal zero. A variety of functions c20 (p) which fulfils the conditions 
(i) and (ii) mentioned above have been implemented in Equation (2) and tested during the 
numerical investigations of traffic flow. It has been found that in some cases there can be some 
important differences compared to the case cô = const . However, for the investigations of traffic 
jams considered in (Kerner and Konhäuser, 1993, 1994) and in this article, it has been found that 
one can use in Equation (2) cô = const for the following reasons: 

The range of density (i) is not relevant for p ? Pb (Kerner and Konhäuser, 1994), where traffic 
jams can be formed. The range of density (ii) is usually realized inside traffic jams, but there we 
have ap/ax = 0 and therefore the product cô • ap/ax is equal to zero even when cô > 0 . In an 
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intermediate range of density, where cô > 0 , a possible dependence of the value câ of the 
density, as it follows from investigations made, is not important for the qualitative results 
presented. Therefore, for investigation of traffic jam formations it is possible to express the local 
pressure p in Equation (7) by p = cô • p. 

The value co  may be considered as the velocity of the propagation of a possible or of a necessary 
reaction (ie., a change in acceleration or in slowing down) of drivers which is caused by some 
local change in traffic flow down-stream. In other words, the delay time T, of this reaction of the 
drivers on the local change in traffic flow which is situated on a distance Ax down-stream from 
the drivers is approximately equal to 2r  = Ax/co  . This interpretation of the value co  may be 
confirmed by two facts: (i) near the critical density pc, (i=1, 2) of the instability of an initially 
homogeneous traffic flow, as it follows form the formula for the velocity of a propagation of small 
amplitude nonhomogeneous perturbations (Kerner and Konhäuser, 1993) vo  = vh  — co  , the value 

co  is equal to this velocity v, in a system of co-ordinates moving with the average speed of 

vehicles v,, ; (ii) correspondingly to the formula for the phase velocity v, (see also Equation (9) 
below) and to the results of the investigations of instability of traffic flow (Kerner and Konhäuser, 
1994), this propagation of local perturbations in a system of co-ordinates moving with the velocity 
vh  without sharp attenuation is only possible in the direction up-stream form a source of 
perturbations. 

The value `t, strictly speaking, depends on the density: At low density interactions between 
vehicles are seldom. Therefore, the relaxation time 't is longer than at high density. This 
circumstance has additionally been taken into account in the kinetic model of traffic flow. 
However, as it follows from numerical investigations made in the range of the density p >_ Pb , 
which will be considered below it is found that the dependence t(p) is not important for the 
qualitative results. For this reason and for simplifications ti = const has been used in all 
illustrations presented below. 

Fundamental diagram 

The function V(p) in (2) is a phenomenological monotonous decreasing function of p . The 

related dependence on p of the traffic volume Q(p)=p • V (p) is obviously a function with only 
one maximum Q = Q mar  (Figure 1(b)). Traffic engineers call this relationship fundamental 
diagram (eg., Leutzbach, 1988). This fundamental diagram (Figure 1(b)) makes sense only for a 
homogeneous and time-independent traffic flow. 

For given values of the total number of vehicles on the whole road N and the length of the road L, 
there is only one homogeneous and time-independent state ph> vh  for the traffic flow under 
consideration: ph  =N/L, vh  = V(ph ). 

The corresponding flux (traffic volume) is q,, = vh  • p11 . Therefore the given values N and L 

determine one point on the fundamental diagram Q(p): qh = Q(ph ) and one point on the speed 

density relationship V(p): vh  = V(ph). In (Kerner and Konhäuser, 1993, 1994) it has been 
shown that the given number N can represent not only the homogeneous state but also the non-
homogeneous solutions in the form of local clusters of vehicles . 
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Figure 1 The example of the function V(p) 

a) and of the corresponding fundamental diagram Q(p) 
b). Results of the umerical computations for 	1 

V(p) = 5.0461 11 + exp(((p/15) — 025)/0.06) —3.72 .10-6 i~t , 
co = 2.04971 f The found critical values of density for L = 8 .£ are 

Pc( - 0.161315 and pct 	0.411815 
(for the meaning of the densities pct and pct see Kerner and Konhäuser (1993)). 

Stochastic macroscopic traffic flow model 

To investigate the development of critical fluctuations in a vicinity of critical points of the density 
discussed above, it is possible to use a stochastic macroscopic traffic model which includes the 
continuity equation (I), the stochastic equation of motion 

z 
p[—+  + 

v ax 
- p ~V (p)— v]— cô âP + 2 P • (x, t) 	(8) 

and the conditions (3). In (8) the stochastic function 4x, t) describes the random component of 
acceleration (or slowing down) of vehicles and is measured in unites of .2/ti2 . 

A correlation length x of the stochastic function (x,t) can not be less than the value lip , 
corresponding to an average distance of vehicles. On the other hand, fluctuations of an 
acceleration or a slowing down of vehicles being situated far enough from one another may be not 
correlated. A correlation time yJ of the stochastic function (x,t) may depend on both the density 
and the average speed of vehicles. In particular, for small time-intervals an acceleration or slowing 
down partially correlates but does not correlate only for large time-intervals. These properties of 
the function t(x,t) have been taken into account in the algorithm, where a random number- 

generator has been used. In this case an amplitude of the function (x,t) has been limited by 
some maximum value. Additionally, a correlation time-interval T as well as a road section of 
length x , where the fluctuations are correlated, was taken into account, and it was assumed that 
the section of length x moves with the speed vh . 

Stochastic macroscopic traffic flow model for inhomogeneous traffic 
flow 

Due to entering and exiting traffic to on- and off-ramps traffic flow is, as a rule, inhomogeneous. 
In the kinetic model of traffic flow on a long road with I on- and J off-ramps, the continuity 
equation has to be modified 
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0/at +aq/ax = /g; (x — x , t)—  r (x —xi ,t). 	 (9) 

It can be assumed that expressions g; (x—x;,t)=g° (t)•cp; (x—xi) and 

r~ (x — xi, t) = rr°(t) • ~ (x — xi) , where the functions (p. (x — x; ) and çbi (x — x.) are strongly 
localized near the corresponding on- or off-ramp. The equation of motion (8) and the boundary 
conditions (3) complete the model. The terms on the right-hand side of Equation (9) include 
entering traffic gi to the on-ramp "i" situated at x = x; and exiting traffic ri from the highway to 

the off-ramp "j" being situated at x = xi . Values of integrals qV = g° (t) • f
o
g); (x — x )dx or 

q(di) = ri (t) • f'
L
pi (x —xi )dx correspond to fluxes qV and q(ci') to on-ramp "i" or to off-ramp 

"j", respectively. 

PHYSICS, STRUCTURES AND PROPERTIES OF TRAFFIC JAMS 

In this section, based on the results of the original work by Kerner and Konhäuser (1994), a brief 
review of the physics, the structures and the properties of traffic jams which are formed in an 
initially homogeneous traffic flow will be given in this section. 

Kinetics of traffic jam formation in initially homogeneous stable traffic 
flow 

If a local perturbation appears in an initially homogeneous traffic flow, a local cluster of vehicles 
which is surrounded by the initial homogeneous flow can spontaneously be formed on a road long 
enough. As long as the local cluster does not reach one of the boundaries of the road, the latter can 
be considered as an "open" system. 

In the numerical analysis of the kinetic model (1)—(3), a stable initially homogeneous traffic flow 
has been disturbed at t = 0 by the local perturbation 

Ap(x)=Apm {cosh-2 (02(x—x°))-0.25cosh-2 (0.05 •(x-25e—x° ))). 	(10) 

If the amplitude Apm of the local perturbation (10) exceeds some critical value Api , the 
amplitude of the initial local perturbation (10) grows in time and a local cluster appears on the 
road (Figure 2(a)). The shape and the properties of the local cluster formed do not depend on the 
amplitude of this local perturbation. Contrarily, if the amplitude of the initial perturbation Apm 
(10) is lower than Apo , the amplitude of the initial local perturbation fades in time. 

The local initial perturbation first moves down-stream with only slightly increasing amplitude 
(Figure 2(c)). After some time (= 36ti) , this local perturbation comes to a stop and its amplitude 
begins to grow rapidly (Figure 2(d)), forming a cluster of vehicles of large amplitude, ie the traffic 
jam (Figure 2(e)). Then, the developing cluster moves up-stream. 

The width of the cluster L,, ie the distance between the cluster's fronts, where the density and the 
average speed of vehicles sharply changes in space, monotonously increases in time. It occurs 
because the up-stream front of the cluster moves with a higher negative velocity vg , 
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(vg, —0.8448.2/'t) compared to the velocity vs, of the down-stream front 

(vg, —0.7174.ß/'t). Therefore, the derivative 

dLs/dt = Vgr — vg, 	 (11) 

is positive. The increase in L, is linked to the fact that the flux of vehicles through the up-stream 
front of the cluster, ie the flux into the cluster qt,,, is stronger than the flux through the down-

stream front, ie., the flux out of the cluster qW, (gant  = 0.56090 etc) (Figure 2(f)): 

g in i gout 
	 (12) 

where qi,, equals to q h  . The condition (12) means that the cluster of vehicles—a traffic jam— 
acts as some new local source of vehicles on the road moving up-stream which "stores" more and 
more vehicles in the course of time. This local source of vehicles forms down-stream it a new 
almost homogeneous traffic flow with smaller density Pmin  (Figure 2(a)). For this reason, far 
down-stream from the traffic jam, there moves a transition layer with positive velocity 

v,,, 	gout> (Ph — Pmin f t between the initially homogeneous traffic flow and the new 
homogeneous traffic flow formed by the traffic jam. Thus, the local cluster of vehicles is a non-
stationary localised structure which consists of: 

a) the proper cluster of vehicles, ie., the traffic jam; 

b) the new homogeneous traffic flow formed by the traffic jam down-stream; 

c) the transition layer between this new and the initially homogeneous flow moving down-steam 
(Figure 2(a)). 

Furthermore, it is instructive to consider the vehicle trajectories on the t-x plane (Figure 3), 
corresponding to the local cluster shown in Figure 2(a). One can see in Figure 3 that the driver 
which has caused the local perturbation at t = 0 and at the distance = 150e from the beginning 
of the road can always travel with high speed. Therefore, this driver is far away from the traffic 
jam he is responsible for. Consequently, this driver does not know anything about the traffic jam 
which he has "prepared" for the other drivers moving at some distance behind him. 

ti r 
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Figure 2 	The kinetics of the local cluster formation: (a)—the dependence p(x, t), (b, c, d, e, f)—the 
distributions p(x) , v(x) and q(x) (f) in the intermediate moments of time ((b)—t1 = 0 , 
(c)—t2 = 19T , (d)—t3 = 36't , (e)—t4 = 691'); (f)—t5 = 200T . The initial distribution 
p(x,0) = ph +Ap(x) with Ap (12), Apm =0.045,  ph = 0.165 , xo =150L . The 

other parameters are the same as in Figure 1. 
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Figure 3 	The vehicle trajectories, corresponding to the local cluster shown in Figure 2(a) 

Traffic jam and fundamental diagram 

In the local cluster of vehicles (Figure 2(a)), the values of density p , average speed v, and, 
consequently, the flux of vehicles q = v • p depend on position x and time t. It means that in the 

p -q phase plane the dependence q(p) , which corresponds to the distributions v(x) and p (x) at 
some fixed moment of time t, represent some closed curves. The local cluster formation, which 
corresponds to the kinetics shown in Figure 2, is shown on the p -q phase plane in Figure 4. 

One can see that when the amplitude of the local perturbation comes to a stop and begins to grow 
rapidly (Figure 2 a, c, d)), the local perturbation on the p -q phase plane corresponds to the curve 
which is sharply deviated from the fundamental diagram (Figure 4(c, d)). The developed traffic 
jam (Figure 2(f)) on the p -q phase plane corresponds to the nearly stationary curve which has 
roughly the shape of a "triangle" (Figure 4(e)). 

Figure 4 	The kinetic of the cluster formation in the p -q phase plane: (a, b, c, d, e)—the curves 

q(p) at the same moment of time as shown in Figure 2(b, c, d, e, f), correspondingly. 
Dotted lines represent the fundamental diagram from Figure 1(b). 
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Velocity and other parameters of traffic jams 

When the width L, of the traffic jam is large enough (t > 200ti , Figures 2 and 3(e)), the average 
speed of vehicles in the traffic jam approaches Vmin - O (and consequently the flux 

Clam = Vmin • Pmax = 0 ), ie., the developed traffic jam corresponds practically to a standstill. 
Taking this into account and also that the developed traffic jam on the p -q phase plane represents 
the triangle (Figure 4(e)), where the upper line with negative slope corresponds to the up-stream 
front and the lower line with negative slope corresponds to the down-stream front of the traffic 
jam, one can get the approximate formulas: 

_ 	 \ t 	_ 	/ 	l i 

V g r --dont • (Pmax — Pmin) e Vg t --~lh (Pmax — Ph) , 

where gout = Vmax • Pmin ; Pmin and v.. = V(Pmin) are the density and the average speed of 

vehicles directly down-stream of the traffic jam, correspondingly. The flux clout , or else the 
density p,,, , and p max do not depend upon ph . Therefore, the velocity vgr also does not depend 

on ph . On the contrary, the velocity vgt becomes more and more negative the higher the density 
Ph is. For this reason, as it follows from (11), the width of the traffic jam 

LS (t) = LS(to)+
((Pmaxqh Ph) (nm 

Clout 

pmin)) 
(t to ) 

is the stronger increasing in time, the higher the density ph is. In (14) to = const . Emphasize that 

vg, , P min , gnu, and v,nax are the given characteristics, ie., intrinsic parameters of traffic. They 
do not depend on the density in the initial flow, on the length of the road and on the initial 
perturbation which growth leads to the formation of jams. These prediction of the theory (Kerner 
and Konhäuser, 1994) are in agreement with the results of experimental investigations (Kerner and 
Rehborn, 1996). 

Boundary (threshold) density and boundary flux of traffic jam's 
existence 

There is a boundary (threshold) value of the density P b for an excitation of a traffic jam, ie., in a 

homogeneous flow there is a boundary flux q t, = V(pb )• Pb . At ph < ph (ie at q h <qb ), a local 
perturbation of any amplitude fades in time, ie a traffic jam cannot develop. On the other hand, 
from this qualitative consideration it follows that if a traffic jam would exist in the flow but up- 
stream of the traffic jam the density p < pmin , this traffic jam should disappear in the course of 
time. Indeed, in this case qt, < goo, and correspondingly to (14) the width of the traffic jam L, 
should monotonously decrease. Therefore, the density Pb should be close to the density p,nin ; 
consequently, the boundary flux qb for an excitation of the traffic jam is close to the flux clout 

PbPmin tlb = qout• (15) 

Emphasize that the flux goo, is considerably lower than the flux Qmax (Figure 1(b)) which 
corresponds to the maximum point on the fundamental diagram. 

It is necessary here to notice that if the density Ph equals p i) or only slightly exceeds it, narrow 
traffic jams, as a rule, are formed. Inside such traffic jams the average speed of vehicles 	is 

(13)  

(14)  
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considerably higher than zero. As a result the values Pmin  and gnat  which should be used in (15) 
are a little bit lower for narrow traffic jams than the corresponding values for the wide traffic jam 
(Figure 2(a), t > 200'r ) discussed above. For narrow traffic jams, where Vmin > 0 and 

gmi,, = Vmin • gmax > 0 , the formulas (13) should be replaced by 

Vg r =(Quin — clout/ (Pmax — Pmin) 1,  Vg l =(gmin — qh) (Pmax — Ph J 1 ' (16) 

It follows from (16) that the velocities vg,. , vg1  for narrow traffic jams are higher than for the 

wide traffic jam. They can even become positive as the density Ph decreases. 

Amplitude of critical perturbation 

The amplitude of a local perturbation Apm  (10) should exceed some critical value Apo  for the 

traffic jam to be excited (Figure 5). The critical amplitude Apo  is maximal at the density Pb 
(Figure 5). 

Figure 5 	Critical amplitude of a local perturbation (10) as the function of p h  

There is also some critical value of the density p o r which is higher than ph  . At p h > Pc r any 

local perturbation grows on the long road in the course of time. This means that the value Apo  is 

a monotonously falling function of Ph in the interval pb <_Ph ÇPcr and it tends to zero at 

P I, — par  (Figure 5). Therefore, in the range p b  < Ph <P Cr the homogeneous state of traffic flow 
is a "metastable" state: A random appearance of a localized critical fluctuation, whose amplitude 
exceeds a critical value Apo  (Figure 4), causes an excitation of a traffic jam (see also Kerner, 
1996). This property of traffic jams (Kerner and Konhäuser, 1994) is qualitative similar to the 
behaviour of localized dissipative structures—autosolitons (Kerner and Osipov, 1994; Kerner, 
1996)—which can spontaneously occur in a lot of nonlinear distributed systems. 

Notice that the more the amplitude of localized perturbation AN passes over the critical value 
Apo  (Figure 5), the less the delay time td  for the appearance of a traffic jam is (Figure 6). This 
delay time can be calculated (Figure 6) as the time between the occurrence of the local 
perturbation (t = 0) and the moment of time, when this local perturbation comes to a stop and 
begins to grow rapidly. 
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Figure 6 

-1 	-0.5 	0 	0.5 1n((Apm —Apc)APc) 

The delay time 'Ed  of traffic jam appearance as the function of ON — Ape  y/pc  for 

Ph = 0.16 P . The other parameters are the same as in Figure 1. 

MULTIPLE TRAFFIC JAMS AND OTHER COMPLEX STRUCTURES IN TRAFFIC 
FLOW 

Up till now a simplification of the consideration only the localized structure which consists of one 
traffic jam has been discussed. Besides complex sequences of different jams can be formed. The 
traffic jams in these sequences have, as a rule, different amplitudes, different widths, different 
velocities and are not situated periodically in space (Kerner and Konhäuser, 1993, 1994). 

Formation of multiple traffic jam from small amplitude fluctuations 

Multiple traffic jam states can spontaneously appear due to a development of fluctuations with 
small amplitudes in traffic flow, if the density exceeds the critical value pct  (Figure 1). The 
corresponding investigations of the model (3), (8) are shown in Figure 7. It can be seen there that 
fluctuations with small amplitudes after some time delay lead to the formation of a lot of traffic 
jams which cover the whole road. These traffic jams build a complex sequence: The traffic jams in 
this sequence have different amplitudes, different widths, different velocities and are not situated 
periodically in space. Traffic jams which have different velocities can catch up one another and 
than merge (Figure 7(b)). Therefore, parameters and the quantity of traffic jams in the discussed 
complex sequence changes permanently in time (Figure 7(a)). 

"Dipole layer" effect in dense traffic flow 

Up to now we have considered the range of density pb  < Ph < pc„ where different kind of traffic 
jams can be self-formed. In dense traffic flow, exactly, in a range of the density 

Pcr' <Ph < Pb' 	 (17) 

a new non-linear effect can be realized in an initially homogeneous traffic flow: If a localized 
fluctuation, whose amplitude exceeds some critical value Ape  , occurs, a localized structure in 
traffic flow in the form of a "dipole-layer" (Kerner et al. 1996) can spontaneously be self-formed 
(Figure 8). The developed "dipole layer" in the p -q phase plane corresponds to a nearly stationary 
curve which again has roughly the shape of a "triangle" (Figure 8(c)). 
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Figure 7 Kinetics of the formation of a stochastic sequences of traffic jams due to the 
development of fluctuations in traffic flow: (a) the dependence p(x, t) , (b) the 

distributions of p and vat moment of time t = 372t . p,, = 0.18p , 6 = 0.05 Ptti2  . The 

other parameters are the same as in Figure 1. 
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Figure 8 	Kinetics of the formation of the "dipole layer" in traffic flow: (a)—the dependence p(x, t) , 
(b)—the distributions p(x) and v(x) and (c)—the "dipole layer" in the p -q phase plane 

at t = 250't . Dotted line in (c) represents the fundamental diagram (Figure 1(b)). The 

initial distribution p(x,0) = ph  — Op(x) with Lp(x) (10), Apm  =0.120 , ph  = 0.430 , 
x0  = 600 . The other parameters are the same as in Figure 1. 

The maximal density in the "dipole layer" Pm.„ (Figure 8(c)) nearly coincides with the 

corresponding density in a wide traffic jam (Figure 2(f)). The characteristic density Pmfa (Figure 

8) is a decreasing function of p h  : At ph  —> Pb• , the value Pmin tends to the boundary density Pb 
and the "dipole layer" gradually transform into a wide anti-cluster considered in Kerner and 
Konhäuser (1994). In other words, when ph  —> ph, the "triangle" shown in Figure 8(c) 
degenerates in the p -q phase plane into a line, corresponding to the wide anti-cluster. 

Notice that in (17) the boundary density Pb' = Pmax  , where Pmax  coincides with the maximal 

density in a traffic jam (Figure 2(f)). The amplitude of the critical perturbation Ap, is an 

increasing function of the density ph  . Exactly, the value Ape  tends to zero at ph  —> pc, and it is 

maximal at ph = Pb' 

DETERMINISTIC SPONTANEOUS APPEARANCE OF TRAFFIC JAMS IN 
SLIGHTLY INHOMOGENEOUS TRAFFIC FLOW 

A homogeneous traffic flow is obviously a hypothetical state of traffic flow: A real traffic flow on 
a highway is always inhomogeneous due to entering and exiting traffic to on- and off-ramps. In 
this section based on the results of the work (Kerner et al. 1995), where the model (2), (9), (3) has 
been investigated, it will be shown that a process of a formation of a traffic jam shows 
qualitatively new peculiarities even in a slightly inhomogeneous traffic flow: A traffic jam on a 
highway can spontaneously appear in a deterministic way, ie., even when fluctuations in traffic 
flow are so small that their influence on the dynamic processes may be neglected. 

We restrict the consideration of usual cases, when a traffic jam in a deterministic way 
spontaneously appears even if the flux in the traffic flow in any region of the road is considerably 
lower than the flux Qmax  which is shown in Figure 1(b). To show this effect, let us assume that at 
time t < t0  = 0 there is an initially homogeneous traffic flow with some density Ph  , average 
speed of vehicles vl, and a flux qh  = vh  • p„. Obviously the initially homogeneous traffic flow 
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on a road becomes inhomogeneous when, beginning at the time t = 0 , some additional flux 

qa = (IT appears from an on-ramp: The total flux q, = q h  + qa  (which is chosen to be lower 

than Qmax)  builds on the road directly down-stream from the on-ramp a traffic flow with higher 

density ph, > ph  . In real traffic flow, a flux q a  is usually not a constant during a long period of 

qa, 0<t<95T 
time. If for example, qa  = 	 , ie., for t > 95ti the flux q a  from the on-ramp 

0, 	t > 95ti 
becomes zero, the transition layer at t > 95ti begins to move. Although the total flux in the traffic 
flow is chosen to be considerably lower than Qmax  (Figure 1(b)), a self-formation of traffic jam in 
a deterministic way starts and the traffic jam is formed after the transition layer has begun to move 
(Figure 9). The physics of this effect is linked to the "local breakdown" effect which has been 
considered in (Kerner et al. 1995). 

x/e 
8r_,ù 

Figure 9 	A deterministic appearance of a traffic jam in inhomogeneous traffic flow at a total flux 

q, < Q. : the dependence p(x,t) for the time t > 95ti , when due to galb95¢  0 

the transition layer has begun to moves. (q, = 0.69600 try , ph, - 0.183315 , 
Qmax  = 0.70350 f/t ,) The other parameters are the same as in Figure 1. 

C©C9CLMgIIOOR9S 

Traffic flow of a low enough density of vehicles is a stable state with respect to arbitrary 
fluctuations. If the density exceeds the boundary (threshold) value, due to fluctuations or due to 
different kind of inhomogeneities in traffic flow a traffic jam may spontaneously be self-formed in 
this traffic flow. If the density is further increased, a very complex non-stationary state of many 
interacting traffic jams with different parameters may appear in the traffic flow. An occurrence of 
traffic jams without obvious reason is a quite natural general property of relative dense traffic flow 
and can be considered as some kind of self-organisation in this flow. As the traffic jam moves up-
stream, it will reach after some time a source of the road. The spontaneous appearance of the 
traffic jam somewhere on a long road can cause a sharp change in the whole road network which 
includes the road under consideration. These very complex non-linear processes in the road 
network, which are caused by an appearance of traffic jams on one of the roads of this net could 
be interesting subjects of future investigations. 
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