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Abstract 

Due to the very different degree of competition in the bulker and liner 
markets, and also due to the very dissimilar constraints on their 
respective operations, optimal fleet deployment is quite different for 
each one. Over the past ten years, we have provided "exact" and 
"approximate" algorithms for single or multi-origin and destination 
problems for bulker fleet deployment. 
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INTRODUCTION: A SIMPLE FLEET DEPLOYMENT PROBLEM 

Managers of merchant ship fleets, especially bulk carriers and tankers, frequently find themselves 
with excess transport capacity, and hence must decide which ships to use (and at what speeds) and 
which to keep idle (or perhaps make available to another fleet by sale or charter). Moreover, if fuel 
prices become relatively high, excess transport capacity offers the potentially profitable strategy of 
slow steaming some or all of their ships. Such a strategy not only substantially reduces the 
operating costs of the fleet, but furthermore reduces the supply of ton-miles of the existing total 
bulker fleet, thereby improving the depressed freight rates. On the other hand, a sharp drop in fuel 
prices could make it advisable to `fast-steam' ships built during the expensive fuel era, although 
this would be limited by their design speed and associated operating margin. 

The ships of a fleet could be assumed to belong to N different groups, each consisting of n(i) sister 
ships, i = 1,...,N, of equal cargo carrying capacity, speed and fuel consumption (or in general, 
operating costs). Design speed, cargo capacity and operating costs will in general be different 
among different ship groups. This is both an efficient and general model, since the case of no two 
ships in a fleet being identical is obviously covered by setting n(i) = 1, i = 1,...,N. The mission of 
a fleet is assumed, for our purposes, to be the movement of one commodity between two given 
ports. 

A simple (but realistic) bulker fleet deployment problem was defined in Benford (1981). Most of 
the assumptions inherent in the solution approach, such as no penalty lay-up of unneeded vessels, 
a contract to move a given quantity of a given commodity between one origin and one destination 
port, availability of more than enough ships (tonnage) suited to the trade, etc., were not unrealistic. 
However, the method proposed for its solution did not give the optimal answer, primarily because 
of an artificial constraint that all vessels must be operated at a speed resulting in the same unit cost 
of operation per ton of cargo delivered, imposed for ease of solution, but not a natural constraint of 
the problem. Table 1 below presents the approach adopted in Benford (1981) and its results. 

In Perakis (1985), the problem was correctly solved analytically, without the above equal unit cost 
constraint, using Lagrange multipliers. The results (see Table 2) showed an improvement of at 
least 15% over those of Table 1, thus verifying once more that `constraints impair performance'. 
More realistic and complicated versions of the problem solved in that paper were subsequently 
formulated and solved. 

Table 1 	The Benford (1981) approach 

Ship group 
Annual transport 

capacity (=106  tons) 
Operating cost 

per ton 
Annual operating 

cost (-106) 
1. A, B, C 4.902 $4.562 $22.36 
2. D, E 2.884 $4.546 $13.11 
3. F, G, H 3.726 $4.562 $17.00 
4.I,J — — — 
TOTAL 11.500 $52.47 

Table 2 The Perakis (1985) approach 

Annual transport Operating cost Annual operating 
Ship capacity (- 106  tons) per ton cost (- 106) 

1. A, B, C 4.158 $3.531 $14.684 
2. D, E 2.450 $3.692 $ 9.046 
3. F, G, H 3.241 $4.023 $13.038 
4. I, J 1.651 $4.707 $ 7.771 
TOTAL 11.500 $44.539 
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Comparing Tables 1 and 2, we see an annual cost reduction of $7.93 million, or over 15%. This 
represents a considerable improvement. The difference in costs could be even greater if lay-up 
charges are levied against ships I and J in the solution presented in Table 1. On the other hand, this 
difference could possibly be reduced if ships I and J could be chartered or sold to a third party at a 
particular price. 

Perhaps it is now appropriate to clarify that in the above problem, the annual demanded transport 
capacity is assumed to be a given output (constant). This is the case for vessels operating under 
relatively long-term charters, which normally specify, among other things, the freight rate and the 
amount of cargo to be carried annually. In a normal market environment, long-term charters are 
the overwhelming majority of fixtures, whereas vessels operating in the spot market constitute less 
than 10% of the available capacity. 

The conclusion from the above is that, in contrast to past practices where significant effort has 
been directed toward the optimization of the design and operation of individual ships, an owner of 
a fleet of ships (usually non-uniform in terms of age, size and operating speed) should operate 
each ship in a manner generally quite different from that dictated by single-ship optimization. 
Adoption of the results of this and subsequent research should result in significant cost savings in 
the operations of several shipping companies. 

MORE REALISTIC (SINGLE ORIGIN, SINGLE-DESTINATION) FLEET 
DEPLOYMENT MODELS 

Perakis and Papadakis (1987a and b (Parts I and II)) and Papadakis and Perakis (1989) presented 
more realistic and complicated fleet deployment problems and their "optimal" solutions. The 
problem of single-origin, single-destination fleet deployment was first studied. A computer 
program was developed to solve the problem and to aid the fleet operator make slow steaming 
policy decisions. A detailed discussion of the problem solution and a sensitivity analysis are 
presented in Perakis and Papadakis (1987a). Sensitivity analysis provides the user with an 
understanding of the influence on the total fleet operating cost of its various components. For 
small to moderate changes of one or more cost components, the user can get a very accurate 
estimate of his new total operating cost without having to re-run the computer program. Some 
interesting conclusions were made on the basis of the sensitivity results. 

The fleet deployment problem with time-varying cost components was also formulated and 
solved. A computer program was developed to implement the solution of this problem (Perakis et 
al. 1985). The relevant algorithms are briefly described here as well. The problem of fleet 
deployment when the cost coefficients are random variables with known probability density 
functions was formulated in detail (Perakis and Papadakis 1987b), where analytical expressions 
for the basic probabilistic quantities were presented. A shorter description of the above is included 
in this presentation. 

Objective function and constraints 

A fleet, consisting of a given number of ships, is available to move a fixed amount of cargo 
between two ports, over a given period of time, for a fixed price. Each vessel in the fleet is 
assumed to have known operating cost characteristics. The problem objective is to determine each 
vessel's full load and ballast speeds such that the total fleet operating cost is minimized and all 
contracted cargo is transported. 

A first constraint imposes upper and lower bounds on the vessel full load and ballast speeds. These 
speed constraints are necessary to insure a feasible solution to the problem; which is, that each 
speed is less than or equal to its maximum and greater than or equal to its minimum operating 
limits. In practice, the minimum speed is non-zero and determined by the lower end of the normal 
operating region of the vessel's main engine. The minimum speed should also be adequate for 
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purposes of ship safety in maneuverability and control. The equality constraint must be satisfied to 
insure all contracted cargo is transported. 

This formulation is based on the following assumptions: 
1) A vessel carries a full load of cargo from load port to unload port. 
2) When the vessel is operating in restricted waters, it has a known and constant restricted speed 

which is usually the maximum allowable speed in the region in question, hence requiring a 
known, fixed power and fuel rate. 

3) The number of days a vessel spends in the load port and unload port per round trip is known 
and constant. 

4) The charges incurred at the load port and unload port per round trip are known and constant. 
5) The amount of fuel burned per day in the load port and unload port is known and constant. 
6) The annual costs of manning, stores, supplies, equipment, capital, administration, 

maintenance and repair, and make ready for sail are known and constant. 
7) The power of vessel i may be expressed by 

bi 
Pi = ai Xi for the full load and by 

Pbi=abi•Yi bbi 

for the ballast condition, where Xi and Yi are the full load and ballast speeds of ship i 
respectively and the rest are appropriate constants. 

8) The all-purpose fuel rate for a fully loaded vessel i may be expressed by 

(Rf)i = gi'Pi2 + si•pi + di for the full load and by 

(Rf)bi = gbi ' Pbi2 + sbi ' Pbi + dbi 
for the ballast condition where pi and phi are the normalized (percent) pi and phi respectively, 
and the rest are appropriate constants. 

9) The total annual cost of laying up vessel i is known for all i = 1, ..., z . 
10) The number of days per year vessel i is out of service for maintenance and repair is known 

and constant. 
11) This problem formulation and solution is for a single stage, "one-shot" decision. 

In the literature, the number of tons carried per year is assumed to be a linear function of a ship's 
full load and ballast speeds. In our research, we have shown that this assumption can be quite 
unrealistic. As Figure 1 indicates, this function is quite nonlinear in nature. A derivation of this 
function may be found in Perakis and Papadakis (1987a). 

Operating costs, developed in detail in Perakis and Papadakis (1985), are considered to fit into one 
of two categories, those that do not vary with ship speed, or daily running costs, and those that 
vary with ship speed, or voyage costs. Typical plots for the total (not per ton) operating costs per 
year for a particular ship, for various ballast speeds, are given in Figure 2. 

A typical plot of F(Xi, I'd is shown in Figure 3, as a function of the full load and ballast speeds. It 
is seen that F is a smooth convex curve or surface with a single minimum. There is also a finite 
speed range in which F is not very different from its minimum value, a property which allows 
approximate solutions to the problem using very different speeds for individual ships to produce 
total fleet costs very close to one another and to the optimum cost itself. For Xi and/or Yi going 
towards either 0 or 	, F approaches infinity. Figures 2 and 3 are for the same ship and for 
constant route data. 
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Figure 1 	Typical plot of cargo carried per year as a function of ship speeds 
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Figure 2 	Typical plot for the total operating cost per year as a function of ship full load 
and ballast speeds 
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Figure 3 	Typical plot for the total cost per ton as a function of ship full load and ballast speeds 

Introducing the linear inequality constraints on the speeds complicates the problem solution 
considerably. In the first part of this research, an External Penalty Technique (EPT) has been 
combined with the Nelder and Mead Simplex Search Technique to solve our optimization 
problem. The purpose of a penalty function method is to transform a constrained problem into an 
unconstrained problem which can be solved using the coupled unconstrained technique. 

A computer program has been written to solve this problem using the techniques and the 
formulation mentioned above. The solution returned consists of the ship speeds, for those vessels 
specified for analysis, that will minimize the total mission operating costs and fulfil the cargo 
transport obligation. 
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For the lay-up option, it is shown in the technical report that for even moderate numbers of ships 
in a fleet, it is rather too time-consuming to use an exhaustive enumeration scheme. Instead, a 
dynamic programming-like sequential optimization approach is developed, significantly reducing 
the computational burden. If Z is the number of ships in the fleet, the maximum number of fleets 
we will have to examine using this approach is Mmax = Z(Z+1)/2-1. The actual number of fleets 
which we will have to consider will be significantly smaller than Mmax,  due to the elimination of 
several fleets as infeasible and much smaller than the upper limit of total possible cases. The 
above scheme has been implemented and referred to in the following as the operating cost without 
rerunning the program. This property holds for a given fleet and not in cases when one or more 
ships are laid-up or chartered to a third party (on top of the changes in the cost components). 

The fleet deployment problem with time-varying cost components was also studied. A time 
horizon in this formulation is any interval within which cost components are constant but at least 
one of them is different than its value in another interval. In other words, our cost components are 
given "staircase" functions of time. In the case of rapidly changing costs, resulting in rather short 
intervals where these costs are constant, the problem of non-integer number of round trips per 
interval could be crucial. A heuristic approach was developed to find the nearest "integer" solution 
corresponding to the non-integer solution generally provided by the SIMPLEX algorithm. 

Further details may be found in Perakis and Papadakis (1985 and 1987a, b) and the associated 
user's documentation (Perakis et al. 1985), where a more extensive multi-page flow-chart is 
presented. 

The fleet deployment problem for the case when some of the cost components are random 
variables with known probability density functions was finally considered (Perakis and Papadakis 
1987b). We note that the minimum of the possible mean values of the total annual operating costs, 
Cmin and the variance of Cmin  can be found relatively "easily." However, this approach has not 
yet been implemented on a computer and probably will not prove very useful: The inputs to the 
problem, ie the user-supplied probability density functions, can have any particular theoretical or 
experimental form, thus discouraging the development of any general computer code for this 
problem. 

The multi-origin, multi-destination fleet deployment problem 

The problem of minimum-cost operation of a fleet of ships which has to carry a specific amount of 
cargo from several origin ports to several destination ports during a specified time interval was 
next examined. During the season any vessel can be loaded in any source port (S) and unloaded at 
any destination port (D) provided that these ports belong to a subset I or J (respectively) of the 
total set of ports, such that draft and other constraints for the corresponding vessel are satisfied. 
Under this assumption for each vessel the number of possible routes (number of possible 
sequences of S-D ports) is quite large. The full load and ballast characteristics of each ship on 
each route are assumed to be known. 

This nonlinear optimization problem consists of a nonlinear objective function and a set of five 
linear and two integer constraints. The objective function to be minimized is the total fleet 
operating cost during the time interval (shipping season) in question. The following constraints 
have to be satisfied: 
a) for each vessel, the total time spent in loading, traveling from origins to destinations, unloading 

and traveling from destinations to origins plus the lay-up time has to be equal to the total 
amount of time available for each ship in the shipping season. 

b) The total amount shipped to a particular destination j must be equal to the amount of cargo to 
be delivered to j during the shipping season (in tons). 

c) The total amount of cargo loaded from a particular source i must be less or equal to the cargo 
available at i. 

d) For each ship, the number of trips to destination j must be equal to the number of trips out of j. 
e) Same as (d) for all source ports i. 
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f) The full-load and ballast operating speeds have to be between given upper and lower limits. 
g) The numbers of full load and ballast trips for each vessel, origin and destination combination 

must all be nonnegative integers. 

The constraints presented above are linear except constraints (a) and (g). The maximum number of 
unknown variables (if all source and destinations ports are accessible by any ship of the given 
fleet) is (4•I•J+l)•Z . The number of the associated constraints is 2Z+(l+J) (Z+1)+4•I•J•Z . For a 
case with I=4 , J=6 and Z=10 we have 970 variables and 1090 constraints. Using today's personal 
computers, it is clear that we cannot use any classical nonlinear optimization technique, since the 
expected computation time would be too long. 

In the case of the multi-origin, multi-destination fleet deployment problem, it was seen that the 
linear programming approaches to the literature do not take into account significant nonlinearities 
of the relevant cost functions and may lead to very suboptimal decisions. The iterative procedure 
we developed uses a linear programming software in an algorithmic scheme that takes into 
account these nonlinearities and produces accurate results. This approach is ideally suited for a 
personal computer due to the reasonable running times of the LP software for almost 'any practical 
situation. A second, nonlinear approach to solve the multi-origin, multi-destination problem was 
also implemented, using the available MINOS nonlinear optimization package. 

In Papadakis and Perakis (1989), the fleet deployment problem for a fleet of vessels operating 
between a set of several loading and unloading ports under certain time and cargo constraints was 
examined. Full load and ballast voyage costs were treated as nonlinear functions of the ship full 
load and ballast speeds, respectively. An optimization model, appropriate for bulk carrier fleets, 
minimizing the total operating cost, was formulated. The existence of a coupling between the 
optimal speed selection and the optimal vessel allocation on the available routes was 
demonstrated, and conditions leading to the decoupling of these problems were established. 
Considerations referring to the structure of the optimal solution resulted in a substantial reduction 
of the dimensionality of the problem. We found that in cases of low-to-moderate fleet utilization, 
linear programming may be applied to derive the optimal solution, while in cases of higher fleet 
utilization, use of nonlinear optimization may become necessary. The potential benefits of our 
approach were demonstrated by several examples. 

Finally, we would like to note that the algorithms and the computer codes, developed for both the 
one-origin one-destination and for the multi-origin, multi-destination fleet deployment problem 
can be easily used to find not only the optimal fleet deployment policy within the given time 
horizon but also to help the fleet operator to make decisions in case unexpected events like strikes 
or accidents occur. In such a case the programs can be re-run for the remaining time interval and 
an optimal decision can still be obtained. Other plans, such as renewing or improving a part of the 
fleet and selling or chartering decisions may also be evaluated. 

FLEET DEPLOYMENT MODELS FOR LINER SHIPPING 

In Perakis and Jaramillo (1991a) we have reviewed the relevant work on liner shipping 
deployment and described current industry practices. Our objectives and assumptions were then 
presented. A model for the optimization of the deployment of a liner fleet composed of both 
owned and chartered vessels was formulated. The determination of the operating costs of the ships 
in every one of the routes in which the company operates was carried out by a means of a realistic 
model, providing the coefficients representing voyage cost and time required for the input of the 
linear program presented in Perakis and Jaramillo (1991b). A method for determining the best 
speeds and service frequencies was also presented; the fixing of those two groups of variables was 
required to linearize the deployment problem as formulated there. The overall optimization 
method was described in detail, and a real life case study was presented, based on the co-author's 
company (FMG, Flota Mercante Grancolombiana) operations, in Jaramillo and Perakis (1991b). 

In an upcoming journal article (Powell and Perakis 1995), we extend and improve on the above. 
An Integer Programming (IP) model was developed to minimize the operating and lay-up costs for 
a fleet of liner ships operating on various routes. The IP model determines the optimal deployment 

VOLUME 4 173 
7TH WCTR PROCEEDINGS 



where 

Ckr 

Xkr 

ek 

TOPIC 2 
MARITIME TRANSPORT (SIG) 

of the existing fleet, given route, service, charter, and compatibility constraints. Two case studies 
were carried out, with the same as above extensive actual data provided by FMG. The optimal 
deployment was determined for their existing ship and service frequency requirements. 

The inputs to the optimization model presented in Powell and Perakis (1995) are based on the 
existing cost estimation model provided in Perakis and Jaramillo (1991), including ship daily 
running costs, voyage costs, costs at sea, costs at port, daily lay-up costs. 

The optimization model in Perakis and Jaramillo (1991) is given as: 

K R 	 K 	~ 
Minimize 1, 	Ck1.Xkr. + EekYk 

k=1r=1 	k=1 

= operating cost per voyage for a type k ship on route r 

= number of voyages per year of a type k ship on route r 

= lay-up cost for a type k ship 

Yk = number of lay-up days per year for a type k ship 

In Perakis and Jaramillo (1991) and Jaramillo and Perakis (1991) a Linear Programming (LP) 
approach was used to solve this optimization problem. Using an LP formulation required the 
rounding of the number of ships allocated to each route. The rounding led to some variations in 
targeted service frequencies and to sub-optimal results. An Integer Programming formulation is 
used in Powell and Perakis (1995) to eliminate any rounding errors in the previous LP solution. 

Integer programming problem formulation 

Decision Variables 

Nkr = the number of a type k ship operating on route r 

Yk = the number of lay-up days per year of a type k ship 

for k = 1 to K and r = 1 to R ; K is the number of ship types and R is the number of routes. 

Objective function 

The objective function in the model minimizes the sum of the operating costs and the lay-up costs. 
The objective function in terms of the decision variables is: 

K R 	 K 	~ 
Minimize ~, ~, C' k r Nkr + ~ Ykek 

k=1 r=1 	 k=1 	 j 

where 

C'kr = operating costs of a type k ship operating on route r 

ek = daily lay-up cost for a type k ship 

Constraints 

Ship availability. The maximum number of ships of type k operating cannot be greater than the 
maximum number of ships of type k available. Therefore: 

174 VOLUME 4 
7TH WCTR PROCEEDINGS 



OPTIMAL FLEET DEPLOYMENT 
PERAKIS 

R 
E Nkr <_ Nk ax for each type k ship 
r=1 

where 

—max = maximum number of type k ships available 

Service frequency. Service frequency is the driving force in liner shipping. With all rates being set 
by conferences, the main product differentiation is on service. To ensure that minimum service 
frequencies are met, the following constraint is included: 

K 
Et' kr Nkr > Mr  for all r , 

k=1 

where 

t'kr  = yearly voyages of a type k ship on route r and: 

t kr = tkr/Tk 
Tk = shipping season for a type k ship 

Mr  = number of voyages required per year in route r 

By finding the highest load level for any given leg of route r and comparing this with given ship 
capacity, we find the minimum required number of voyages per year for a specific route. 

Ship/route incompatibility. Some ships may be unable to operate on a given route due to cargo 
constraints, government regulations, and/or environmental constraints. It is necessary to eliminate 
these ships from the model. Therefore: 

Nkr  = 0 , for given (k,r) pairs 

Lay-up time. The lay-up time in our models is equal to the time a ship is not operating during the 
year. This includes dry-docking and repair time. 

R 
Yk = 365Nkax —Tk E Nkr 

r=1 

Non-negativity. The decision variables must be non-negative. 

Nkr>_ 0 

Software application 

The software package used to run the above example was "A Mathematical Programming 
Language" (AMPL) (Holmes 1992 and Fourer et al. 1992) and OSL, a mathematical program 
solver. See Powell and Perakis (1995) for more details. The output file from AMPL gives the 
following information: 
(i) optimal value of objective function 
(ii) value of objective function with LP relaxation 
(iii) number of iterations to find solution 
(iv) values of variables at the optimal solution 

The values of the Nkr  variables will show how many type k ships should be allocated to each route 
r. The Yk variable will indicate the number of days for which type k ships must be laid-up. 
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1 
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4 
5 
6 

Ship Type 
7 
8 

(Chartered) 	 9 
10 
11 
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2 
3 
1 
1 
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2 
0 
0 
2 
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1 1 
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1 
1 

1 

1 1 

2 
1 
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Optimization examples 
The following two examples are for the fleet deployment for FMG. The fleet consists of six types 
of owned ships and five types of chartered ships (one long-term charter and four short-term 
charters). The data used to calculate the coefficients for the optimization model is taken from 
Perakis and Jaramillo (1991b). The cost and time coefficients used are transformed from per 
voyage units to per ship values. 

Example 1 

The first example optimizes the FMG fleet deployment for their current shipping conditions. This 
example uses FMG's existing service frequencies and the number of ships available of each type. 
The current allocation is shown in Table 3. 

Table 3 	Current ship allocation 

Example 1 Results 

The IP optimal allocation is given in Table 4. The minimum objective function yields a total 
operating cost of $91,831,000. This is compared with $93,148,000 for the current allocation. This 
corresponds to a reduction in total operating costs of 1.4% (a savings of $1,317,000 per year). 

Table 4 	Resultant ship allocation (Example 1) 

Route 
1 
	

2 
	

3 
	

4 
	

5 
	

6 
	

7 
	

Total 
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Ship Type 
7 
8 

(Chartered) 	9 
10 
11 

Total 

1 __ 5 ___ 6 
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1  
0  
0
2  
2  
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-_ -_- 3 

1  _____ 
--- 
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2
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Route 
4 5 7 2 3 1 

2 6 4 1 3 3 2 

1 
2 
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4 
5 
6 

(Owned) 

1 1 4 
1 1 
3 

1 
1 

1 

1 1 
1 

2 
2 

Total 
6 
2 
3 
1 
1 
1 

2 
1 
0 
2 
2 

21 

Ship Type 
7 
8 

(Chartered) 	9 
10 
11 

Total 
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Analyzing the resulting allocation shows that all owned ships (k = 1 to 6) and the long-term 
charter (k = 7) are in use for the entire shipping season. This is due to the high lay-up costs 
associated with these ship types. 

None of ship type 9 are allocated. This ship type has the highest operating cost of any of the short-
term charters. 

Example 2 

Example 2 uses the frequency constraints of the LP model presented in (Jaramillo and Perakis 
1991). The resultant allocation of the LP model is contained in Table 5. This example compares 
the results and highlights the advantages of the IP model versus the results of the LP model. 

Table 5 	Linear programming allocation 

Route 
1 
	

2 
	

3 
	4 	5 	6 

	
7 
	Total 

Example 2 Results 

The IP optimal allocation of ships is given in Table 6. The minimum objective function gives a 
total operating cost of $99,400,000. 

Table 6 	Integer programming allocation (Example 2) 
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The resulting allocation of the IP optimization model maintains all of the target frequencies. 
Routes 1, 3, and 5 exactly meet the target frequencies while on routes 2, 4, 6, and 7 the frequency 
is improved. The improvement ranges from 1.3 days to 3.3 days. 

For the LP comparison example presented, the optimal objective function of the IP model is 
$99,400,000. Although the cost produced by the LP model is substantially smaller, it is important 
to note that the service frequencies are compromised in the 1991 LP solution, which leads to sub-
optimal allocation. Table 7 shows the comparison between service frequencies of the IP 
optimization model and the LP model. 

Table 7 	Comparison of frequencies 

Route 
1 2 3 4 5 6 7 

Target Frequency 14 14 21 15 30 23 35 

IP Model 14 10.7 21 12.9 29.2 20.4 33.7 
Difference 0.0 -3.3 0.0 -2.1 0.0 -2.6 -1.3 

LP Model 14.7 16.1 18.9 16.1 29.2 19.2 33.7 
Difference 0.7 2.1 -2.1 1.1 -0.8 -3.8 -1.3 

Since service is a priority in liner shipping, it is necessary to meet the target frequencies. The IP 
optimization model ensures that all target frequencies are met. The LP model violates the target 
frequency for routes 1, 2 and 4. This is an average increase in service time of 1.3 days or 9.1%. 

Using Integer Programming to solve integer problems always produces the optimal solution for 
the given constraints. No manipulation of results is necessary. Using Linear Programming to solve 
IPs requires manipulations of the results to make the decision variables integer numbers. This 
leads to sub-optimal solutions and constraints being violated. 

Substantial savings may be achieved by applying our IP optimization model for the fleet 
deployment .of a liner shipping company. The first example in (Powell and Perakis 1995) 
compares our IP model against the existing fleet deployment of a liner shipping company. This 
example shows a reduction in operating costs of 1.5%. The second example compares our IP 
model with the LP model contained in (Perakis and Jaramillo 1991). The results of the IP model 
are optimal and meet all service frequency constraints. The LP model violates the service 
constraints in three routes by an average of 9.1%. 

The solution indicates that all owned and long-term charter ship types should be operated for their 
entire shipping season, due to the high lay-up cost associated with these ship types. Short-term 
charters should only be used if the owned ships and long-term charters can not meet the cargo and 
service frequency constraints. 

SUMMARY 

Due to the very different degree of competition in the bulker and liner markets, and also due to the 
very dissimilar constraints on their respective operations, optimal fleet deployment is quite 
different for each one. Over the past ten years, we have provided "exact" and "approximate" 
algorithms for realistic, single or multi-origin and destination problems for bulker fleet 
deployment, including optimal slow-steaming lay-up decisions, under conditions of certainty or 
uncertainty for the various cost components. We then also solved problems in optimal strategic 
planning and ship-route allocation for a major liner company, presenting independent models for 
fixing both the service frequencies in the different routes and the speeds of the ships, using at first 
linear and subsequently integer programming. Several insights from a review and comparative 
study of the above were presented in this paper, starting from the proper problem definition 
(constraints artificially imposed have resulted in 15% higher costs in early literature on this 
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problem) and ending with the benefits of optimal integer solutions to the liner fleet deployment 
problems we studied. 
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