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Abstract 

The system optimal morning rush hour departure rate is solved for one 
OD pair connected by a bottleneck with stochastic capacity. The 
departure rate increases over time and is independent of the right-hand 
tail of the capacity distribution. A time-varying toll supports the 
optimum as a user equilibrium. 
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INTRODUCTION 

Dynamic traffic equilibrium models fall into four categories: deterministic user equilibrium, 
deterministic system optimum, stochastic user equilibrium and stochastic system optimum. 
Considerable research effort has gone into the development of algorithms that can solve for the 
associated traffic flows on networks of practical interest. Yet such algorithms remain elusive even 
for the deterministic models. Moreover, conceptual difficulties persist in how to model traffic 
behaviour over space and time, and in understanding how drivers behave under uncertainty. 

Given this state of affairs, analytical models continue to have a role in developing intuition, and in 
helping to explain behaviour of more complex models. The Vickrey (1969) bottleneck model of 
the morning rush hour has been particularly useful in examining various aspects of travel 
behaviour, including departure time, route choice, elastic demand, driver heterogeneity and 
tolling. However, attention has generally been confined to nonstochastic environments. 

Recently, the stochastic user equilibrium for the Vickrey model with a single route was solved 
analytically by Arnott et al. (1994). The purpose of this paper is to solve the stochastic system 
optimum for the same model. Together, the papers provide a conceptual framework for studying 
the effects of Electronic Road Pricing and Advanced Traveler Information Systems. 

The paper is organized as follows. First the deterministic user equilibrium (DUE) and 
deterministic system optimum (DSO) of the Vickrey bottleneck model are reviewed. The 
following section develops and solves the stochastic system optimum (SSO), and indicates how it 
can be decentralized using a time-varying toll. A comparison is made with both the DSO, and the 
stochastic user equilibrium (SUE) derived in Arnott et al. (1994). The next section examines in 
detail a simple example that displays intuitive properties that are not transparent in the general 
specification. The conclusion provides a summary of results. 

THE BOTTLENECK MODEL IN A DETERMINISTIC SETTING 

The deterministic model is a variant of Vickrey's (1969) bottleneck queueing model of morning 
rush-hour traffic. It is described and analyzed in detail in Arnott et al. (1990). Only the essentials 
are given here. 

In the model, N identical individuals drive, one per car, from home to work along a single route. 
Demand is independent of price, so that N is fixed. Road capacity is determined by a bottleneck 
with a maximum service rate s. If the arrival rate of drivers at the bottleneck exceeds s, a queue 
develops. Let r(t) denote the arrival rate of users at the bottleneck at time t, Q(t) the number of 
vehicles in the queue, and f the time at which the queue was last zero. Then 

Q(t) = f r(r)da - s(t - t) . Time spent queueing is q(t) = Q(t)/s. 

Without loss of generality it is assumed that travel time under free-flow conditions is zero, so that 
individuals reach the bottleneck as soon as they leave home, and once through the bottleneck 
arrive immediately at work. Hence a driver leaving at time t arrives at work at time ta(t) = t + q(t). 

Individuals are assumed to have a common preferred arrival time at work, t*, and incur a schedule 
delay cost D(ta  -t*) if they arrive at to  instead. t* can be thought of as the official starting time for 
work. It is assumed that D(•) is (weakly) convex, with D(0) = 0, D(x) > 0 for x#0. In parts of the 
paper it will be assumed that D(•) has the piecewise linear form: 

D(ta  -t*) = ß Max[0, t* - t a] + yMax[0, t a  - t*]. 	 (1) 
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The parameter 13 reflects the costs of arriving early, including the need to wake early, difficulties 
in scheduling household and other activities, and wasted time before work begins. Parameter y 
includes any employer sanctions, or inconvenience to coworkers, from arriving late. 

In addition to schedule delay costs, an individual departing at t incurs a queueing time cost aq(t). 
This cost includes gasoline consumption, vehicle depreciation, and the opportunity cost of time. 
Trip costs for a driver departing at t are the sum of queueing costs, schedule delay costs and any 
toll, t(t): 

C(t) = a q(t) + D(t + q(t) - t*) + r M. 	 (2) 

To assure that the departure rate is finite in the no-toll equilibrium it is necessary to assume that 
a+D'(•) >0. This condition holds necessarily for late arrivals. For early arrivals, it requires that a 
minute of time spent queueing be more costly than an extra minute of time spent waiting for work 
to begin. 

In the stochastic setting to be considered in the following section it will be convenient to work 
with normalized variables. To smooth the transition we introduce them here. Define p(t) = r(t)/N 
to be the normalized departure rate. (p(t)dt is the fraction of drivers who depart during the time 
interval (t, t+dt).) Let R(t) be cumulative normalized departures. And let = N/s be the time 
required for all drivers to pass through the bottleneck. 

Deterministic User Equilibrium (DUE) 
In the DUE, trip costs equal schedule delay plus travel time costs. This sum must be constant 
during the departure period. Figure 1 depicts such an equilibrium. Variables corresponding to the 
DUE are denoted by a superscript n. Variables corresponding to the DSO—considered below—are 
denoted by a superscript o. The first driver departs at time ton. Encountering no queue, he reaches 

work immediately at a cost C"(tô) = D(to — t*) that includes only schedule delay. A driver 

departing at t > to incurs a cost C" (t) = aq" (t) = D(t+ q"(t) — t*) . In equilibrium, C°(t) = 

C°(to) for all t in the departure period. Queueing time reaches a maximum at t." for the driver who 
arrives on time. 

The last driver departs at time to , and avoids queueing. So the first and last drivers both incur 
only schedule delay costs. This common cost must equal equilibrium trip cost, C": 

C" = D(tâ - t*) = D(té - t*). 	 (3) 

Since the bottleneck operates at capacity throughout the travel period, 

to — tg = O . 	 (4) 

Equations (3) and (4) can be solved for to , ten and C° . The solution values depend on the shape 
of the schedule delay cost function, but not on the unit cost of travel time, a. If schedule delay 
costs are given by (1), the solution is: 

t0 "=t*— ß+Y 0, te =t*+ß ß Y ~, (5) 

C" =S¢, 	 (6)

•where S = ßY/ (ß+Y) • Average schedule delay costs and average travel time costs are both 
50/2. 
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Figure 1 	No-toll deterministic user equilibrium and system optimum 

Deterministic System Optimum (DSO) 

Queueing time is deadweight loss in the bottleneck model. The DSO is thus achieved by holding 
the departure rate at bottleneck capacity: r°(t) = s = p°(t) = I/O and R° (t) = (t - t ) /0 . To 

minimize total schedule delay costs, to is chosen so that the first and last drivers incur the same 
schedule delay costs: 

D(tg -t*) = D(tg - t*). 

Furthermore, the bottleneck is at capacity throughout the rush hour: 

t° — t° e o —  

Because equations (7) and (8) are congruent with (3) and (4), the timing of the rush hour is the 
same as in the DUE. If schedule delay costs are given by (1), to and te are given by (5). Since 
total queueing costs are zero, average trip costs equal average schedule delay costs, which are the 
same as in the DUE. Hence 

(7)  

(8)  

(9) 

The DSO can be decentralized by using a time-varying toll, ti (t), that starts at zero at to and 
evolves at a rate equal in magnitude and opposite in sign to the change in schedule delay costs. 
Since this is precisely how queueing cost behaves in the DUE, T °(t) = aq° (t), t E[ t°, t° ] . 
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THE BOTTLENECK MODEL UNDER UNCERTAINTY 

Introduction 
In reality, travel times are rarely constant, as is assumed in the deterministic model, but rather vary 
from day to day. Probably the most important source of variation are fluctuations in road capacity 
due to road repairs, construction, accidents, vehicle disablings, bad weather, snow removal, etc. 
Fluctuations are modeled here by treating 4) = N/s as a random variable, with a cumulative 
distribution function J(4)), and a range [4)Min 4)Max Within this range, the probability density can 
be zero, and can also have mass points. 

4) is assumed - to fluctuate from day to day, but to remain constant during the travel period on a 
given day. This assumption is reasonable for capacity fluctuations due to road work, weather and 
possibly major truck accidents; less so for automobile accidents and disablings. 

Stochasticity in 4) creates a dilemma. If capacity is low, then a high departure rate will lead to a 
long queue. This can be avoided by choosing a conservative departure rate. But if capacity is high, 
the bottleneck will be underutilized, and aggregate schedule delay costs will be unnecessarily 
high. The optimal departure rate entails a balance between these two costs. 

To find this balance, it is necessary to distinguish states in which a queue exists from states in 
which there is no queue. Let 4)(t) denote the maximum 4) at which no queue exists at time t, t > to. 
Suppose that cumulative departures, R(t), follow the time path shown in Figure 2. If 4)Min  is 
realized, the normalized capacity of the bottleneck is 1/4)M1n. This is indicated by the slope of the 
steeper of the two rays emanating from the point (to, 0). As drawn, R(t) is everywhere flatter than 
this ray; ie p(t) < 1/4)Mtn. So a queue never develops when 4) = 4)M1n. If, at the other extreme, Max  

is realized, the normalized capacity of the bottleneck is 1/OMax  equal to the slope of the flatter ray 
from (to, 0). R(t) lies everywhere above this ray, so that a queue exists when 4) = 4)Max for all t > to. 

Figure 2 	Queueing patterns in different states 
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Suppose, finally, that p _ O(t). A queue starts to build at point A, where the departure rate p(t) 
reaches 1/0(t). The queue disappears at point B, starts again at C, and dissipates again at D and 
time t. For 4>p(t), a queue exists at t, whereas for 4<4(t), queueing ends before t, if indeed a queue 
develops at all. Hence, consistent with its definition, 4(t) is the largest for which there is no 
queue at time t. 

What happens after time t depends on the departure rate. Three possible values, p i  =1/0(t), p2 
>110(0, and p3  <1/4(t), are shown in Figure 2. If for CE (t,t+dt), p(t') = pt , then «(t+dt) = p(t); the 
critical 4  does not change. If p(t') = p2, then 4(t+dt) = 11p2; the critical 4  jumps to a lower value. 
Finally, if p(t') = p3, the critical 4  will decrease by an amount proportional to dt. In summary, 

	

Lim 0( t+ dt) _ O(t) if p(t') 51 /0(0 	
for t'e (t, t + dt). 

dtL0 	 p(t) if p(t)>_1/¢(t) 

This in turn implies the following differential relationship between OW and p(t): 

dO(t) 	-1/[p(t)] 2  if p(t)= 1 /0 (t)andp(t)>_0 
dp(t) 	 0 otherwise 

where the dot over a variable indicates a time derivative. The complication that O(t) is not a 
differentiable function of p(t) must be addressed when solving for the optimal p(t), a problem 
addressed next. 

The Stochastic System Optimum (SSO) 
In this section, the problem of choosing a time path for p(t) that supports the SSO is formulated 
using the theory of optimal control. The objective function is taken to be aggregate expected trip 
costs. This choice follows from two prior assumptions, and one new one: (1) The number of trips, 
and hence the gross benefits of travel, are given; (2) individuals are identical, so that there is no 
reason to discriminate between them; (3) individuals are risk neutral with respect to trip costs. 

To simplify notation, superscript o denoting the SSO will be omitted except where desired for 
emphasis or later reference. Let q(t,4) >_ 0 denote queueing time at time t given p. The, control 
problem can then be stated as follows: 

Afar 

Min  
D(t -t*) J(¢(t))+ f [D(t+g(t,g) -t*) +ag(t,0)]dJ(0) p(t)dt 

to , te, p(t)). 	 C( o 

subject to (10) and the constraints: 

CI( t, 0) = 
{0p(t)-  1 	if 	0 ?_(t) [multiplier ,(t, 0) >_ 0] 
 0 	if 0 	0(t) 

R(t) = p(t) 	 [multiplier p. < 0], 

R(t 0 ) = 0, 	R(t e) =1 . 

(11) 

(a)  

(b)  

(c)  

The objective in (11) is an integral over the departure period [to,te] of expected trip costs of 
individual drivers, multiplied by the normalized rate at which they depart, p(t). The first term in 
the integrand for t accounts for realizations of P.0(t), for which there is no queue, and hence for 
which drivers incur only schedule delay costs. The probability of no queue is J(p(t)). The second 
term in the integrand accounts for states in which queueing does occur. 

Constraint (a) specifies the equation of motion for queueing time in each state. A separate 
multiplier, or adjoint variable, ß,(t,4), is defined for each 4. X(t,q) can be interpreted as the shadow 

(10) 
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cost of queueing time at time t, given 4). Constraint (b) accounts for the evolution of the state 
variable R(t). Because an exogenous increase in R(t) would reduce the number of drivers left to 
travel, the shadow (ie marginal system) cost of R(t), given by multiplier 1.t, is negative. Initial and 
final conditions on R(t) are given in (c). 

The last driver, who departs at te, arrives at work at time te + q(te,4)), which is after to if 4) > 4)(te). 
But since everyone has now departed, the shadow cost of queueing time is zero, regardless of 4). 
Hence 

te ,¢) = 0, for all 0 
E [¢M~n oMax] 	 (12) 

Derivation of the optimal departure schedule 

The Hamiltonian for (11) is 	 (13) 

{D(t_ 	
a Alex 	 a M.x 

H = t*)J(0(t))+ 1 [D(t+ g(t,¢)— t`)+ ag(t,O)]dJ(¢)+µ}P( t) + J a(t,0)[Qp(t)-1]d~(0).  
au) 	 O(t) 

Necessary conditions for a minimum are 

aH —D(t—t*)J(0(t))+ af [D(t+q(t,0)—t*)+aq(t,O)]dJ(0)+µ 
dp(t) 	 o(t) 

+ J A(t,0)0dJ(0) — (t, 0(t))[ 0 (t)p(t)-11
d40(t))  ci(1)(t) _ o 

a(t) 	 (1$ 	dp(t) 

~( t0)
-- dH — (—p(t)[D' (t + q(t, 0) — t*) + a] if 0 >_ ¢(t) 

aq(t,0) jl 	0 	 otherwise 

H(to) =0, H(te) = 0. 	 (16) 

Condition (14) governs the optimal departure rate. Condition (15) governs the evolution of the 

adjoint variables. By assumption, D'(•)+a,>0, so that A( t, 0) <_ 0: the shadow cost of queueing in 
any state decreases monotonically over time. This is because the number of drivers still at home, 
and who will be delayed by the queue, is declining. Finally, (16) gives transversality conditions 
for to and te, which are unconstrained. 

Given'condition (10), the last term in (14) is zero whether or not p(t) = 1/4)(t). Hence (14) can be 
written: 

a Max 

D(t— t*) J(0(t))+ f [D(t+q(t,0) —t*) +aq(t,¢)+A(t,0)¢11J(0)+µ= 0. 	(17) 
a( () 

As our first result we have (proofs of all propositions are given in Lindsey 1994): 

Proposition 1: The optimal departure rate, p°(t), is weakly increasing over the departure period; 
hence the cumulative departures schedule, R°(t), is convex. 

The intuition behind Prop. 1 is that the cost of queueing in any state, as measured by ß,(t,4)), 
diminishes over time as the number of drivers yet to depart decreases. Hence, the initial departure 
rate is chosen conservatively, then gradually liberalized as time passes. 

(14)  

(15)  
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The timing of departures is described in: 

Proposition 2: In the SSO, departures occur continuously over the time interval [t ô, té], where 

tô<t*, t 	t* . 

Proposition 3: The marginal system cost of a driver is It= D(t°o  — t*). 

To see this, note that since a driver can leave just before t g without imposing any costs on others, 

the system cost of an extra driver is the private travel cost of a driver at t  , D(to-t*). Adding a 

driver increases required cumulative departures by one, at a cost -1.t. Hence -µ = D(t°c  — t*). 

The initial departure rate is specified in 

Proposition 4: p(to) = 1 / 0 Max 

If the initial departure rate exceeded 1/0Max  queueing would begin immediately for large values 
of 0.  The system cost of the first drivers would exceed their private costs by an appreciable 
amount, and it would be cheaper to have these drivers leave just before tô , a contradiction. 

The terminal departure rate is given by 

Proposition 5: P(te) — J ' 	 
[a+D'(té -t*)] 

(18) 

Equation (18) involves te, which cannot generally be expressed in closed form. But if schedule 
delay costs are given by (1), equation (18) reduces to: 

P(te) = 
/ 	

lll
1 

J 1
[

aa Y ]J 
(19) 

As p(t) rises toward a maximum at te, 4(t) falls to a minimum at the a/ (a + D (t — t*)) 
fractile of the distribution of 0, as can be seen from (18). The distribution of 0  below this fractile 
has no influence on either the departure rate or on travel costs. Hence capacity investments or 
traffic management policies that improve capacity only in the most favourable states are 
worthless. 

A departure schedule with properties consistent with Props. 1-5 is shown in Figure 3. The 
departure rate is held to 1/0Max  for an initial period. At tq  it starts to rise, and queueing develops in 
the least favourable (high 0) states. After 	, drivers arrive late in some states. Departures cease 

at t°  >_ t * with the departure rate at 1/0( te), where 0( t°) E [0  Min Max] 

To summarize: in the SSO queueing occurs in unfavourable states, whereas capacity is 
underutilized in favourable states. This contrasts with the DSO, in which the departure rate is held 
constant at (known) capacity, and neither queueing nor underutilization of capacity occurs. 
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Figure 3 	A departure schedule for the SSO 

Stochastic User Equilibrium (SUE) 

The SUE was studied by Arnott et al. (1994) for the case of linear schedule delay costs. Here we 
give an abridged treatment, and focus on comparison with the SSO. As illustrated in Figure 1, 
given a convex schedule delay cost function and certainty, the departure rate in the DUE is 
monotonically decreasing with time. This turns out also to be true of the SUE when no tolls are 
imposed: 

Proposition 6: In the no-toll SUE the departure rate pn(t) is weakly decreasing over the departure 
period; hence cumulative departures Rn(t) are concave. 

Prop. 6 stands in contrast to Prop. 1, which states that the departure rate is monotonically 
increasing. To see why pn(t) decreases over time note that as time passes, the expected rate of 
reduction in schedule delay costs from postponing departure decreases, and eventually becomes 
negative. For expected private trip costs to remain constant, expected queueing costs must increase 
at a decreasing rate, and eventually decline. 

The timing of departures, which is qualitatively the same as in Prop. 2 for the SSO, is described in: 

Proposition 7: In the no-toll SUE, departures occur continuously over the time interval 

[ t. , to ], where to < r, 
Given the qualitative similarity between the timing of departures in the no-toll SUE and the SSO, 
one may ask whether the departure periods coincide. Towards answering this, note that in the no-
toll SUE, the expected private costs of the first and last drivers must be equal. In the SSO, their 
expected system costs must be equal. Now the system and private costs of the first driver are the 
same in the SSO because queueing is initially prevented. Moreover, since the shadow cost of 
queueing vanishes at to by (12), the system and private costs of the last driver are also the same. 
Hence in both the no-toll SUE and the SSO, the private costs of the first and last drivers are equal. 
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This might suggest that the departure periods are also equal. But this is not the case, for the 
departure rate schedules differ, and hence too the distribution of queueing times faced by the last 
drivers in the two regimes. The fact that departure times can differ will be confirmed by example 
in the next section. 

To further characterize the no-toll SUE, and to facilitate comparison with the SSO, we now 
assume that schedule delay costs are piecewise linear, as given in (1). Following Arnott et al. 
(1994) define 

=J-'[aaY ]~ ~ 1-J(0)-01- 0dJ(0) 	dJ ar Y J~
(0

)• (20) 

0- is the a/(a+y) fractile of the J(•) distribution, and 0 is the mean of 1 for 0 >_ 0. The following 
result is proved in Arnott et al. (1994). 

Proposition 8: Let the schedule delay cost function be (1). Then 
a) If 

tô = t* —~ lp, té = + ~J > t*. (22) 

Expected trip costs are 

C" = C" (t o ) = ß(t * -t ) = S~ • 	 (23) 

b) If (21) is not satisfied, then ten = t*, and to = t * —00 , where r > 0 is the unique solution 
of the following implicit equation 

1 
J(00) + 	f 

~dJ~~) - a 
a~Y 

Y  - O. 	 (24) 
as 

Expected trip costs are 

C"=C"o o) =Noo' 
Prop. 8 reveals that whether departures continue after t* in the no-toll SUE depends on the extent 
of variation in q). If the distribution is not too spread out ((21) holds) then departures continue; 
otherwise they stop. The distribution of ( thus affects the qualitative properties of the no-toll SUE. 
However, small values of 4) in the distribution may have no effect. To see this, suppose first that 

(21) is satisfied. Then, according to (23), expected trip costs are proportional to 0 : the mean value 
of q) above the a/(a+y) fractile of the J(•) distribution. The distribution of q) below this fractile has 
no effect on trip costs. According to (19), the SSO has the same property. 

If (21) is not satisfied, costs are given by (25), which is independent of the distribution of I below 
(00. Since 00 > 0 , costs are invariant to a larger proportion of the distribution than when condition 
(21) holds. 

It is evident that the no-toll SUE and the SSO may or may not be functions of the same range of 
the (0 distribution. But in either case, the no-toll SUE is invariant to the most favourable 

(25) 
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realizations of 4). Once again, a policy that enhanced capacity only in the most favourable states 
would be ineffective. 

Decentralization of the SSO with a time-varying toll 
In this section, we return to the general schedule delay cost specification and show that the SSO 
can be supported as a SUE by use of a time-varying toll. Drivers are assumed to pay the toll when 
they enter the commuting corridor. 

In the deterministic setting considered in earlier, the optimal time-varying toll equals queueing 

time in the no-toll DUE: "C° (t) = aq"(t). The toll internalizes the costs drivers impose on other 
drivers, and assures that the equilibrium departure rate equals capacity. 

Following the same principle, the time-varying toll with uncertainty is set equal to the difference 
between expected system and private travel costs. In light of (17), the requisite toll is 

o Mea 

i-(t)= f  mt,0)040); 
.;)(t) 

that is, the toll equals the expected increase in travel costs imposed on later drivers. Now, given 

Prop. 4, ¢( tg) = Max which implies that 2° (t ô) = 0. And given (12), To (t é) = 0. Hence the 
toll is zero at the beginning and the end of the departure period, just as in the deterministic setting. 
During the departure interval, the toll is positive, and is a concave function of time. These results 
are summarized in: 

Proposition 9: The time-varying toll that decentralizes the SSO is a concave function, ° (t), such 

that 1°(to)= 0, i°(te)=0, i° (t)>0 for tn (to, t°). 

When the optimal time-varying toll is applied, the SSO is supported as a SUE, and expected 
private trip costs are constant during the departure period. What about dispersion in trip costs? It is 
apparent from Figure 3 that after tq  both expected queueing delay and the range of possible 
queueing delays increase with t. This suggests that trip costs also become increasingly dispersed. 
It is straightforward, but tedious, to show that this is indeed true in the sense of second-order 
stochastic dominance. Stated formally, we have: 

Proposition 10: Let C(t) be the random variable denoting trip costs at time t in the SSO. Suppose 

tô _< t< t' <_ té . Then t ( t) has second-order stochastic dominance over CV ). 

Prop. 10 suggests that drivers who are risk-averse with respect to trip costs will prefer to depart 
early in the SSO. However, this is not necessarily true of the no-toll SUE, as demonstrated by 
example in the next section. 

AN EXAMPLE 

In this section we explore the properties of a simple example. The example serves three purposes. 
First, it illustrates properties of the SSO and no-toll SUE that were derived in earlier. Second, it 
exhibits additional properties of the two regimes that cannot be deduced from the general model, 
but are intuitively reasonable. Third, it shows that expected cost reductions from implementing the 
SSO with a time-varying toll can be comparable to the gains from implementing the 
corresponding DSO when 41 is known. 

(26) 
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Specification 

For the example, schedule delay costs are given by (1) and 0 has a two-point distribution: 4) = ?p i 
with probability 1-n, 4 _ 02 > 4)1 with probability R. Hence the cumulative distribution of 4) is 

0 	0 < 0, 
1-7r 	01 <0<02• 
	 (27) 

1 	0 02 

State 1, in which 4) = 01, can be thought of as "normal" travel conditions, in which road capacity is 
at its design level. State 2 entails reduced capacity due to accidents, vehicle disablings, bad 
weather, etc. 

Stochastic System Optimum (SSO) 

The optimal departure schedule for the SSO is described in: 

Proposition 11: Let D(•) be given by (1), and J(0) by (27). Then 

(a) If 

then 

where 

Expected 

where 

 - t* - 	Y 1 
° 	ß+y[ 

° 	* 

° 

7r <_ y l (a + y), 

p°(t)= 
{Il 

11/02 , 	fort E (Co ,t21) 

1/0„ 	fortE(t2,t~)
, 

ß 	[(1 -ic)(a+y)-a](1-tr)(1-6) 
~2 

(28)  

(29)  

(30)  

(31)  

(32)  

(33)  

(34)  

(35)  

t21t 	
ß+y[ (1-~)(ß+Y)-I(1-n)(a+y)-a](1-n+g6) 

y ( 1-r)(ß+ Y)— [(1 -7c)(a +y)- a](1- rr+ nu) 

(1-ir)(a+y)-a 
4" 

0,• 
a- (1- 7r)(a -ß) 

(b) If condition 

te =t* + ß
+y 

trip costs are 

(28) is not 

tp = t *—ß+ y ~2 ~ 

(1-7r)(ß+Y)-[(1-n)(a+y)-a](1-ir+7c6) 

C° = 2(t*—to). 

satisfied, then 

p°(t)=1/0 2 , 	fort E(t~,te), 

to = t*+ ß+y 02r 

J(95) = 

206 VOLUME 2 
7TH WCTR PROCEEDINGS 



OPTIMAL DEPARTURE SCHEDULING 
LINDSEY 

(36) 

Part (a) of Prop. 11 applies if capacity reduction is not too likely. The departure rate function 
behaves qualitatively as described for the general model earlier. The departure rate begins at  

1 / Max¢ 	=1 / 02 . At t21  <_ t* , it is raised to 1/41, where it remains thereafter. The higher the 
probability of normal capacity the sooner the departure rate is raised. Queueing occurs only in 
state 2, and after t21 

If condition (28) fails, part (b) of Prop. 11 applies. The departure rate is restricted to 1/02 
throughout the travel period. Both the timing of departures and travel costs are the same as if state 
2 were certain. This illustrates the possibility, noted in Section 3, that the departure rate is 
independent of favourable states. 

In the event that itJy/(a+y), the departure rate after t* can take any value between 1/01  and 1/02. 
To see this, suppose that the departure rate is increased from p to p', with 1/01  <_ p<p'<_I/42. If 
4)=41, the perturbation will result in a saving of late arrival costs equal to y times the reduction in 
late time. If 0=02,  the perturbation will raise travel time costs by a times extra queueing time. 
Since the reduction in late time if 4)=41, equals the amount of extra queueing time if 0=02, the 
expected benefit is positive if and only if (1-tc)y>art; ie if tc<y/(a+y). If tc=y/(a+y), any 
perturbation of the departure rate after t* within the interval [1/4)1, 1/4)2] will leave total expected 
travel costs unchanged. 

The effect of uncertainty on the timing of departures is described in: 

Proposition 12: Let D(.) be given by (1), and J(0) by (27). Let (to (0), t°(0)) denote the departure 

interval when rc=0. Then t < t ô (0). If tt>y/(a+y), then t é > t é (0). If it<y/(a+y) then 

t e  <t:(0). 

Prop. 12 shows that in the face of possible capacity reductions, it is optimal to advance the start of 
the rush hour. However, the last departure may be earlier or later than under certainty. 

No-toll Stochastic User Equilibrium (SUE) 

The no-toll SUE can be derived using Prop. 8. Even for the simple two-point distribution of 4), six 
departure rate and queueing patterns can occur. These are illustrated in Figure 4, in conjunction 
with the corresponding SSO departure schedules. (A categorization of the various cases, as well as 
parameter values used to generate the examples, are given in Lindsey 1994.) Which of the six 
cases occurs depends on the values of (3/a, y/a, 4)1/4)2  and IL. The domains of each case in terms of 
4)1/4)2 and It are identified in Figure 5, using values of 13/a= 0.61 and y/a = 2.38 estimated by Small 
(1982, Table 2, model.l). 

The six cases are defined by three criteria: 

a) Whether ten  > t* or whether ten  = t* . From Prop. 8, ten  > t* when condition (21) is satisfied. 
This is true of cases 1, 2, 3 and 4. 

b) Whether drivers continue to depart after t* if no queue exists in state 1. This is true of cases 1, 
2 and 3. 

c) How long queueing persists in state 1. In cases 1 and 4, queueing lasts until after t*. In cases 2 
and 5, it stops before t* . And in cases 3 and 6, a queue never develops in state 1. 

Criterion b) is satisfied if and only if tt>y/(a+y). By Prop. 11, the same condition determines 
whether the optimal departure rate remains at 1/4)2  throughout the departure period. Hence in cases 
1, 2 and 3, p°(t) remains at 1/4)2, whereas in cases 4, 5 and 6, it increases to 1/4)i  at t21  < t*. 
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Figure 4 	Departures in the no-toll SUE and SSO (two point distribution of 0) 
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Figure 5 	Parameter regions for the six no-toll SUE cases 
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Departures in the no-toll DUE and DSO occur over the same time interval, given by equation (5). 
For the no-toll SUE and SSO, the departure periods coincide for cases 1, 2 and 3. To see why, note 
that in these cases the last driver escapes queueing in both states. Naturally, this is also true for the 
first driver. Furthermore, the system costs of travel for the first and last drivers coincide with their 
private costs. Hence the schedule delay costs of the two drivers must be equal in both the no-toll 
SUE and SSO. This dictates that initial and final departure times coincide in the two regimes. 

Whereas departures occur over the same time period in cases 1, 2 and 3, in cases 4, 5 and 6 they 
begin earlier and end later in the SSO. Because departures are more spread out in the SSO, the 
average utilization rate of capacity is lower. However, the maximum departure rate for the SSO 
can exceed the maximum departure rate in the no-toll SUE. This is evident in Figure 4 for Case 6. 

The six cases differ in how variability in queueing time and trip costs evolve over time. In Cases 
1, 2 and 3, the last driver escapes queueing and thus experiences no variation in travel time or 
costs. The same is of course true of the first driver. Hence dispersion in travel time and trip costs is 
zero at the beginning and end of the rush hour. This contrasts with the SSO, for which (per Prop. 
10) dispersion increases throughout the departure period. 

The behaviour of Cases 4, 5 and 6 is not obvious from Figure 4. It is straightforward to show 
algebraically that variability in travel time increases monotonically in Case 4, but can decrease in 
Cases 5 and 6. It is also possible to show that for all three cases variability in trip costs increases in 
the sense of second-order stochastic dominance. As far as empirical evidence, Bates et al. (1987) 
state: "normal ranges of variability are wider when reported by travellers who usually depart at 
later times of the morning". This is implied by Case 4, and consistent with Cases 5 and 6, but 
inconsistent with Cases 1, 2 and 3. 

Consider finally the effect of imposing the optimal time-varying toll on drivers' expected trip 
costs. In the deterministic setting, tolling leaves private trip costs unchanged because it does not 
affect the departure period. This remains true for Cases 1, 2 and 3. But in Cases 4, 5 and 6, for 
which to < ton , drivers are worse off. This follows from the fact that in the no-toll SUE the first 

driver incurs a cost Cn  = ßt * —ton), whereas in the optimal toll equilibrium the first driver 

incurs a cost ß(t* —to.) + r(tô) = ß(t *  — to ). To overcome driver opposition, partial rebate of 
toll revenue or some other compensation might be necessary. 

An "empirical" example 
While the model is highly stylized, it is nevertheless worth asking which of the six cases are 
empirically plausible. The answer depends on a variety of factors, including those that affect 13/a 
and y/a, such as work hour flexibility, and those that affect (1)1/k and It, such as weather 
conditions, road design, number of driving lanes, speed limits and length of the commute (which 
affects the probability of accidents). Probability distributions oft') for "good weather" and for "bad 
weather" are given in Table 1. These are constructed using data from various empirical studies; 
see Lindsey (1994). 

Table 1 	Probability distribution of 4)  [hours] 

Weather (01 n 4)2 43142 
Good 
Bad 

2 
2.38 

0.41 
0.84 

2.0967 
2.8222 

0.9539 
0.8433 

In good weather, the rush hour lasts two hours under normal conditions. Capacity reduction occurs 
with probability 0.41, with the effect of increasing time to traverse the bottleneck by about six 
minutes. In bad weather, travel time is increased by 19% under undisrupted conditions due to poor 
traction and/or limited visibility. Probability of capacity reduction rises to 0.84. Capacity 
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conditional on an incident is 84.3% of its level without incidents, and the rush hour lasts 49 
minutes longer than with good weather and no incidents. 

The good weather capacity distribution occurs at the point labelled "Good weather" in Figure 5, 
and belongs to Case 4. Departures end at the same time as queueing in state 1, some time after t*. 
The bad weather distribution, labelled "Bad weather", falls into Case 1. This differs from Case 4 
in that departures continue on until queueing ends in state 2. 

Expected trip costs in the no-toll SUE and SSO of the example are given in panel (a) of Table 2. 
Costs are higher in bad weather than good weather because of the compound effect of poorer 
driving conditions and higher incident rates. Costs in the no-toll SUE are higher by $2.467 per trip 
in good weather, and by $3.33 in bad weather. These are the potential gains from implementation 
of electronic road pricing. 

Table 2 	Trip costs for the numerical examples Es] 

(a) q unknown 	 (b) O  known 

Weather 	C" 	c° 	c" _ c° 	Weather 	c" 	C° 	C" - C°  
Good 4.99 2.52 2.467 Good 4.95 2.47 2.473 
Bad 6.66 3.33 3.33 Bad 6.52 3.26 3.26 

For purposes of comparison, travel costs in the two regimes are also calculated on the assumption 
that is known with certainty (both by drivers and the planner) each day. As shown in panel (b) of 
Table 2, both travel costs and the potential benefits from tolls are very similar to their values under 
uncertainty. 

SUMMARY AND CONCLUDING REMARKS 

In this paper we have derived the Stochastic System Optimum (SSO) departure rate for the 
Vickrey bottleneck model of morning rush hour. The paper complements Arnott et al. (1994), who 
solved for the no-toll Stochastic User Equilibrium (SUE). The main conclusions are as follows: 
1. The optimal departure rate is nondecreasing over the departure period (Prop. 1). This contrasts 

with the no-toll SUE, in which the departure rate is nonincreasing (Prop. 6). 
2. The initial departure rate equals the minimum possible capacity, thereby preventing queueing 

in any state (Prop. 4). 
3. The maximum departure rate, which occurs at the end of the departure period, is set at a fractile 

of the capacity distribution that depends on the relative unit costs of travel time and late arrival 
(Prop. 5). Both the SSO departure rate schedule and expected travel costs are thus invariant to 
capacity realizations in the right-hand tail of the distribution. The same is true of the no-toll 
SUE (Prop. 8). 

4. The SSO can be decentralized by applying a toll at the entrance to the travel corridor. The toll 
is a concave function of time, and zero at the beginning and end of the departure period (Prop. 
9). Trip costs inclusive of the toll become increasingly dispersed with departure time (Prop 10). 

5. In the case of a two-point distribution of capacity, the SSO departure period begins either at the 
same time or earlier than in the no-toll SUE. Hence, if a time-varying toll is used to support the 
SSO, expected private trip costs for drivers are equal to or greater than without tolling. 

One feature of the model deserves comment: the assumption that capacity is constant during the 
travel period on a given day. This is not very realistic for capacity fluctuations due to accidents, 
and several recent studies of advanced traveler information systems have allowed for temporary 
capacity reductions. However, these studies have either focused on different aspects of traffic 
behaviour, or been forced to adopt other stringent assumptions. For example, Al-Deek and 
Kanafani (1993) focus on route choice during off-peak travel times, rather than departure time 
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choice during the peak. And they treat the inflow rate of vehicles into the travel corridor as 
constant and exogenous, and include only trip duration in travel costs. 

El-Sanhouri (1994) adopts what might be called a "quasi-equilibrium" approach in which drivers 
choose departure times and routes to minimize expected trip costs, but ignoring the possibility of 
accidents. The tolls he considers are step tolls, optimized on the assumption that capacity 
reductions do not occur, rather than continuously time-varying tolls conditioned on the probability 
distribution of capacity, as here. Finally, he uses simulation rather than analytical methods. 
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