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Abstract 

Public transport interchanges are very important structural elements in 
the transport system of large conurbations. This paper presents a 
methodology developed to allow use of adjective information to 
estimate that intermodal flow matrix. A suite of mathematical 
programmes is written to solve this problem. The basic idea is that 
each adjective must correspond to a numerical interval of the ratios 
between flows. 

VOLUME 2 213 
7TH WCTR PROCEEDINGS 



TOPIC 34 
URBAN PUBLIC TRANSPORT 

INTRODUCTION 

Public transport interchanges are very important structural elements in the transport system of 
large conurbations. When a new interchange is planned, it is frequently not clear what services 
will be offered, both on the outer side of the region and on the more central part of the 
conurbation. 

The most frequent scenario is one in which there is a definition of modes that will be present on 
the interchange, and the total capacity of service by each mode (number of bus berths, railway 
tracks, parking spaces for private cars, etc), the actual services offered being defined at much later 
stages, and evolving during the life of the interchange. 

Before the interchange is designed by the architects, it is essential that a matrix of flows of 
passengers between modes is produced, so that walking corridors and waiting areas can be 
dimensioned. Even if an O/D matrix of the region were known, it would be impossible to estimate 
such matrix through the usual assignment techniques, since they require detailed description of the 
public transport networks in the future. This description is normally available for present 
conditions, but many changes will happen in the future, which cannot be foreseen. The existence 
of the interchange will in itself be a factor for significant changes of the public transport networks. 

What is required is not an exact estimation of flows (the real ones will change from day to day 
anyway), but a knowledge of the orders of magnitude involved in each connection, so that the 
essential input of demand is available to the architects. 

Matrix estimation is a problem which has deserved widespread attention, although in a different 
context. For the case of a road network, using information from traffic counts, initial methods 
based on entropy maximization or minimization of additional information (Van Zuyl et al. 1980), 
have been followed by many papers, either reviewing the formulations for the same kind of 
objectives (Yang et al. 1994), or proposing new approaches (Xu et al. 1993). For that same 
problem, recent papers have been proposing the use of larger fields of information, not only traffic 
counts (Miles 1993). In a recent paper (Kikuchi et al. 1993) attention is drawn to a problem not 
too different from the one studied here—in that case, estimating an O/D matrix for a railway 
line—but the information used is the set of repeated observations of column and row totals. 

This paper presents a methodology developed to allow use of adjective information to estimate a 
matrix of intermodal transfer flows in a public transport interchange. 

The author is not aware of any previous paper dealing with the problem proposed here, in which 
the flows to be estimated are all related to a single node in the network. The methodology 
proposed can be used by itself (ie using only adjective information) but it should be relatively easy 
to adapt it for cases in which a more classical methodology would be used for the estimation of a 
base matrix, and adjective information used to estimate additional or shifted flows. Only the first 
type of problem is treated in this paper. 

The first step is the estimation of row totals in that matrix—total flow coming out of each mode—
which is relatively straightforward given the capacity of that mode and the sequence of stations on 
the same line. In many cases, a similar reasoning may be applicable to flows collected by each 
mode, in which case column totals may also be estimated. 

Adjective information is then used to estimate the inside of the matrix. This information is 
supplied in the form of statements about the ratio of flows in a pair of matrix cells (for instance 
"identical", "much larger", etc). The providers of this information are transport experts, with a 
deep knowledge of the region and of the city, and the corridors served by each mode. 

There is no "a priori" constraint on the minimal number of such statements. Some cells may be 
involved in one statement, some others in several, others not involved at all. In practice we find 
that it is relatively easy to extract this kind of information for a limited number of pairs of cells, 
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and that, as the process goes on, the experts will try to avoid committing themselves to further 
explicitation. 

Another type of important information for the estimation of the matrix is the identification of the 
cells with nil or very small flow expected (illogical or sometimes even impossible connections). 
This will in many cases concern only the diagonal cells, but also, depending on circumstances, 
some other inter-modal connections (for instance a connection between two given modes having 
much better conditions in a nearby station). In either case, this should be included explicitly in the 
model, as it lowers the slackness of the problem, and also prevents the occurrence of very visible 
mistakes in the final results. 

STRUCTURE OF THE MATHEMATICAL FORMULATION 

The basic idea is that there must be a correspondence between the adjective classes and a set (of 
equal dimension) of numerical intervals of ratios between flows. Thus, the value in each cell is 
constrained not only by its row and column totals, but also by its ratios with respect to other cells. 

Without loss of generality, we can impose that ratios always be defined in the direction of the 
largest to the smallest element. A certain number of intensity classes (or levels) for the 
relationship "larger than" is defined. For instance, if we choose to have 6 classes, the following 
intensities could be used: 
1 very weakly (ie the two elements are identical) 
2 weakly 
3 moderately 
4 strongly 
5 very strongly 
6 extremely 

This method defines a constructive and incremental process for the estimation of a matrix subject 
to those constraints, so that at each step, a measurement is made of the remaining "slackness" of 
the estimated flows. 

Let the following terminology be adopted: 

f(i,j) —flow in cell (i,j) of the matrix (non-negative) 

0(i) _ 	f(i,j) —sum of flows in row i of matrix 

D(j) = 	f(i,j)—sum of flows in column j of matrix 

LS(n)—Upper bound of class n of ratios between flows 

N—number of classes (ratio intervals) defined 

We assume to know with good precision the values of one of the sum sets (rows or columns). 

Since we often have to deal with zero (or almost zero) flow values in matrices, a transformed 
expression for the ratios has been adopted, which expresses the relative difference of the two 
values with respect to their mean, and produces no unpleasant results for any non-negative values 
of the flows (except with two zero values). 

f(i,j) - f(k,l) 

(f(i,j) + f(k,l) ) 
(1) 
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Since we assumed that the expression is written so that the largest element comes first, this 
relationship will take values between 0 (equal flow values) and 2 ( f(i,j) very much larger than 
f(k,l) ). This limited interval of variation will be very useful for the definition of aggregate 
objective functions, which would be much more difficult if we were using the direct ratios, 
varying between 1 and infinity. 

The expression stating that the adjective applicable to the ratio between the flows in two cells is of 
order n is the following: 

LS(n-1) <  f(i,j) f(k,l) 	
LS(n) 	 (2) 

(f(i,j) + f(k,1) ) 

For simplicity, we shall define LS(0) as the algebraic symmetric of LS(1), which allows that in 
cases of identical values, in which we may not be sure about which is larger, the bounds of the 
constraint on the ratio be placed symmetrically around zero. 

These constraints can be defined between two cells in the matrix (normally, but not necessarily in 
the same row or column), or between a cell in the matrix and the sum of its row or column. 

The following constraints are defined on the interval limits LS(n) in order to ensure the 
consistency of the solutions obtained for the flows. 

Non negativity of the upper bounds of the classes 

LS(n) > 0, `vin>_1 
	

(3) 

Classes defined by growing order of their upper bounds 

LS(n)_<LS(n+1), b'n<_N-1 	 (4) 

Approximate values for the bounds of the classes, associating each of the adjectives with a typical 
ratio. Using the same example with 6 classes as above, we could have: 

Table 1 Default definition of ratio classes 

Class Adjective Typical Ratio Relative 
(larger than) (up to) Difference 

1 very weakly, ie identical 1.10 0.095 
2 weakly 1.50 0.400 
3 moderately 4.00 1.200 
4 strongly 10.00 1.636 
5 very strongly 50.00 1.922 
6 extremely infinity 2.000 

This can be expressed by a set of pairs of inequations. If we call LST(n)the typical upper bound of 
class n, and allow it to float by some A (for instance 0.05), we can write 

LS(n)-A 5 LS(n) _< LST(n)+A, Vn<_N-1 	 (5) 

with a rigid upper bound of the last class 

LS(N) = 2 	 (6) 

and finally, for symmetry, 

LS(0) = -LS(1) 	 (7) 

As we can see, the use of these typical values and a small enough A (as the one suggested) 
effectively covers the non-negativity and monotonicity constraints mentioned above. 
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OBJECTIVE FUNCTIONS 

We wish to obtain a stable set of values of f(i,j) that satisfies the sum constraints as well as the 
declared ratio constraints. In the presence of a given set of ratio constraints, subject to the structure 
laid above, there may be or not a set of flows that satisfy all those constraints. 

It will often happen that the set of ratio constraints defined be incoherent (no solution), but a 
frequent case will also be that the constraints defined allow a wide field of variation of the flow 
values. 

The intention is to drive the estimation through a constructive process, along which knowledge of 
the implications of the adjective statements over the set of flow values is improved. 

The final goal is to reach a set of ratio constraints that is coherent and produces a flow matrix with 
little slack (possible fluctuations) in its values. For this, a sequence of 4 problems is defined, along 
which the set of applicable ration constraints may have to be changed. 

In all these problems, the constraints of: 
• non negativity of flows f(i,j) and of class bounds LS(n) 
• row and column sums 
• cells with very small flow 
• structure of ratio intervals (listed above) 
• ratios between cell values 

are applied, bearing in mind that the latter may be transcribed differently in successive problems, 
and be "adjusted" along the process, either because a ratio needs to change class to restore 
consistency to the set of constraints, or because a new ratio constraint must be added to the 
problem to decrease the remaining slackness in flow values. 

Check for inconsistencies in the set of constraints 

We wish to check whether there is a set of flows that fully satisfies the set of ratio constraints (1) 

LS(n 1) <  f(i,j) -  f(k,l)  < LS(n) 	 (8) 
2 f(i,j) + f(k,l) ) 

and also, if this proves impossible, to obtain a measure of the degree of inconsistency. 

Let us consider a parameter C >_ 0 (level of disrespect of the constraints), and rewrite the double 
inequation above in the following way: 

LS(n-1)-C <  f(i,j) f(k,l)  < LS(n)+C 
	 (9) 

--12(f(i,j) + f(k,l) ) 

or, if we call the lower bound LI, the upper bound LS, and the expression defining the ratio R( 
(i,j), (k,l) ) or, simpler still, R: 

LI - C<_R<_LS+C 	 (10) 

With the introduction of this parameter, these constraints can always be satisfied. The level of 
disrespect will be larger as C grows, which means we wish to minimize C such that all constraints 
are satisfied. If the solution is C=0, this means there is no inconsistency in the statements made, 
and we may proceed directly to Problem 3. 

We may thus write that the Objective Function of Problem 1 is Min C 
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An alternative way to write the ratio constraints is: 

C>_ LI-R and C>_R - LS 

which allows the synthetic expression: 

C=Max({LI-R}, {R-LS}) 
	

(12) 

keeping unchanged the objective Min C. Let us call CMIN the optimum value of C obtained in 
this problem. 

Identify minimal changes in the ratio statements 

If the value of CMIN obtained in Problem 1 is non-zero, at least one of the ratio constraints could 
not be satisfied without recourse to this parameter. But there may be more than one constraint in 
which this case happens, and the solution of Problem 1 gives no clue towards finding how many 
and which those constraints are. 

To get this information, we have to create two non-negative parameters specific to each ratio 
constraint, one additive, and another subtractive, so that the free variation of the expression is 
permitted. 

If we refer the synthetic terms by the order of the constraints (and no longer by their indices in the 
matrix and the level of the ratio class), the following transformed expressions are obtained: 

Instead of 	R(m)__LI(m)+C 	we have 	R(m)=LS(m)+ß(m)-x(m) 
	

(13) 

R(m)>_LI(m)-C 	 R(m)=LI(m)-a(m)+S(m) 	 (14) 

Since each ratio constraint was composed by two inequations, we now have two equations. In the 
case of the equation relative to the upper bound, an impossible satisfaction of the initial constraint 
will imply that 3>0, whereas x>0 simply means that the ratio does not reach the upper level of the 
interval. Identically for the equation relative to the lower bound, an impossible satisfaction of the 
initial constraint implies a>0 , whereas 8>0 means that this constraint is not active. 

Since we already know that solutions with levels of disrespect of the constraint above are not 
necessary, we should impose that a(m)CMIN and (3<_CMIN, Vm. 

We now look for the set of minimum disrespect, ie a set of values of a and 13 with a minimum 
sum. The objective function will thus be: 

F = Min / (a(m) + 13(m)) 	 (15) 

In the case of ratio constraints where a(m) > 0 we must declare them (at least) one level down. 
We may check whether a change of more than one class will be needed by comparison of the 
value of that a(m) with the width of the next class. Similarly, in the constraints with /3(m) > 0 we 
should increase the ratio class by at least one level. 

These minimal changes must be made only if they do not violate the perceptions of the transport 
specialist. If there is a conflict in this direction, other changes (non minimal) may be introduced, 
constraints may be added or removed, and then Problem 1 run again. 

After these adjustments have been made, we must check run Problem 1 again to check whether it 
is now possible to obtain CMIN = 0. If not, Problem 2 must be run again to locate the new 
adjustments needed. 

When a set of constraints that generates CMIN = 0 is reached can we move on to the next phase, 
where the ratio constraints are stabilized and interval bounds become constant values, the decision 
variables then being the flows in the matrix cells. 
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Finding stable flow estimates compatible with the ratio constraints 

Once the interval bounds have been stabilized, there will be most likely a possibility of fluctuation 
of the flow values. In principle, this fluctuation will be larger when the number of ratio constraints 
used is smaller. 

It is thus important to measure the slackness in the flow estimates, so that the analyst may have a 
notion of how stable are the values with which he must work on his dimensioning job. As long as 
he feels that the estimates are to "loose", he will keep asking for (or generating himself) more ratio 
constraints. He will stop when he feels that the lack of firmness in the ratio statements becomes 
larger than his discomfort in working with the slacks of the current flow estimates. 

For the measurement of those slacks, two antagonic problems are solved, with the same set of 
constraints, one minimizing and the other maximizing the same objective function. 

The constraints used are those of non-negativity of flows, and strict respect for the ratio intervals 
(with the fixed bounds obtained previously). Using again the synthetic notation and the index in 
for the order of the constraint, we have: 

LI(m)__<R(m)<_LS(m) 	 (16) 

The function chosen for objective is the (sum of ) heterogeneities of the numeric values of 
function in the same ratio interval. By looking for a minimum of this heterogeneity, we wish that 
the numeric translations of the same adjective (expressing a relationship between two matrix cells) 
be as similar as possible. 

To measure this heterogeneity the sum of square deviations of the flows ratios in each class (with 
respect to their average) was used, the sum being then accumulated over all classes. If we call this 
measure HET: 

HET = 	[/ [R(m)-µ(R(m))]2,mE (1)(W)] 	 (17) 

in which I(W) is the set of constraints defined for class W and lt(R(m)) is the average of the 
numeric values of the function R in the constraints of order in in that set. 

The total number of parcels in this double sum is always equal to the total number of declared 
ratio constraints. 

The final solution will be obtained with Problem 3—Min HET, but it is wiser to consider it final 
only after the set of flows thus obtained is close enough to the set of flows obtained by solving 
Problem 4—Max HET. 

The discrepancy of flows between the solutions of these two problems may be measured for 
instance through the same function R (difference relative to the mean), computed for all 
homologous cells in the two estimated matrices. As long as these are considered too different, 
more ratio constraints should be added and the resulting remaining slacks measured. 

A SMALL EXAMPLE 

Problem description 

Let us consider a small example taken from a real case involving a new interchange being built in 
Lisbon (Cais do Sodré), in which suburban rail and ferry boats will bring passengers into the city 
for distribution by the Metro, the urban buses and walking (this interchange is very close to the 
traditional center of the city). The real problem is a bit more complicated, since there are also taxis 
and a new light rail system, but a smaller dimension of the matrix simplifies the understanding of 
the example. 
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Modes have been numbered as follows: 

Table 2 	Numbering of modes in example 

1 
	

2 	 3 
	

4 
	

5 
Suburban Rail 
	

Ferries 	 Metro 	 Bus 	 Walk 

and the same 6 classes defined above for intensity of the relationship "greater than" have been 
adopted. 

A total of 10 order relation statements have been used: 
1 (From Rail to Metro) versus (from Rail to Bus) 	—> 
2 (From Rail to Bus) versus (from Rail to Walk) 	-> 
3 (From Rail to Metro) versus (from Rail to Ferries) 	-> 
4 (From Ferry to Metro) versus (from Ferry to Rail) 	-* 
5 (From Ferry to Metro) versus (from Ferry to Walk) 	—> 
6 (From Ferry to Metro) versus (from Ferry to Bus) 	-~ 
7 (From Metro to Rail) versus (from Metro to Ferries) -> 
8 (From Bus to Rail) versus (from Bus to Ferries) 	—> 
9 (From Walk to Metro) versus (from Walk to Rail) 	—> 
10 (From Walk to Rail) versus (from Walk to Ferries) 	—> 

Class 4: strongly larger 
Class 1: identical 
Class 6: extremely larger 
Class 3: moderately larger 
Class 3: moderately larger 
Class 5: very strongly larger 
Class 2: weakly larger 
Class 2: weakly larger 
Class 2: weakly larger 
Class 1: identical 

Many more relationships could be defined (for 20 non-zero cells in the matrix, their total is 190), 
but this was considered a "non-controversial" set. Expansion of the set would be made only if 
needed. 

Based on previous studies, it was possible to estimate with reasonable accuracy the flow brought 
into the interchange by each mode (row totals in the matrix). Column totals were defined by mode 
capacity, but assumed unknown. The model thus takes a "=" sign for the row totals and a ""sign 
for for the column totals. 

The values considered for such totals were: 

Table 3 	Inbound and maximum outbound flows per mode 

Mode 	Rail 	Ferries 	Metro 	Bus 	Walk 
Row Total 
	

12000 	6000 	3000 	3000 	1000 
Column Total 
	

12000 	6000 	10000 	4000 

As can be seen, Rail and Ferries and working at capacity on the inbound direction. There is no 
point in constraining the capacity for the walking mode, so the total of column 6 is left 
unconstrained. 

It was imposed that all values in the flow matrix were non negative, and that the diagonal be all 
with zero values. The variations of the default class bounds (taken as the typical values described 
above in section 2) were allowed up to a maximum of 0.05 in either direction. 

All the calculations referred hereafter have been performed using the EXCEL spreadsheet 
SOLVER tool. Since the problems to solve are non-linear, the risk exists that the computed 
solution is only a local optimum. Indeed we have found this to be the case, which has lead to the 
adoption of a scheme whereby repeated runs of the SOLVER were made using newly generated 
random values for the free variables in each of the problems. For each problem a series of 10 runs 
was made, in which typically three of four times the best of the optima would be achieved. 
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Consistency checking 

For consistency checking, we have solved Problem 1 as defined above. Maybe due to the fact that 
this is a small matrix, and a small number of statements was made, a value of zero could be found 
for CMIN, so there was no need to run Problem 2 or to change the level of any of the ratio 
statements. 

The flow matrix thus obtained is already a feasible solution for the estimation problem: 

Table 4 First feasible flow matrix 

Sub_Rail Ferry Metro Bus Walk Sum_Row 

Sub_Rail 0 228 7581 2020 2172 12000 
Ferry 1682 0 2396 249 1673 6000 
Metro 786 578 0 798 837 3000 
Bus 1484 1137 0 0 379 3000 
Walk 21 23 23 933 0 1000 
Sum Col 3974 1966 10000 4000 5060 

The limits obtained for the classes for the ratio relationships were those in Table 5. As can be 
seen, the upper bounds of classes 2 to 5 were all lowered by the maximum allowed change (0.05), 
the upper bound of class 1 suffering also a change of the same direction but of much smaller 
magnitude. 

Table 5 	Ratio class limits before and after optimization 

Default Values Optimized Values 

Quotient Relative 
Difference 

Quotient Relative 
Difference 

LS(1)  1.10 0.095 1.10 0.093 
LS(2)  1.50 0.400 1.42 0.350 
LS(3)  4.00 1.200 3.71 1.150 
LS(4)  10.00 1.636 8.67 1.586 
LS (5) 50.00 1.922 30.15 1.872 
LS(6) infinity 2.000 infinity 2.000 

We can verify that the flows in the matrix respect the ratio constraints: for instance, on the first 
constraint: 

(From Rail to Metro) versus (from Rail to Bus) -* 	Class 4 

These flows are respectively 7581 and 2020, for which the quotient is 3.753 and the relative 
difference is 1.158. This value is located between LS(3) and LS(4) as it should. The same 
verification could be made for any other constraint. 

Finding a homogeneous solution and measuring its stability 

After a feasible solution has been found, we must run problems 3 and 4 (Min HET and Max 
HET), trying to find solutions that, whilst verifying all constraints, differ as much as possible 
between themselves. 

For that purpose, constraints must be rearranged in the spreadsheet, sorting them by class of 
relationship to ease the computations of intra-class variances. Again we should run the SOLVER 
several times, starting from different initial random flows. But here the class limits are rigidly 
defined. 

VOLUME 2 221 
7T1-1 WCTR PROCEEDINGS 



TOPIC 34 
URBAN PUBLIC TRANSPORT 

The following table (Table 6) shows the results obtained for those two problems (multiple 
solutions exist with the same extreme values of HET, both at the minimum and at the maximum, 
but they always present very small changes among themselves). The vector format is chosen here 
to simplify the perception of the differences between flow values in homologous cells. Along with 
the flows, the values of relative difference and absolute difference are shown: 

In this table we can see that the differences are most smaller than 100 (passengers per hour) in 
absolute value, and that in all such cases the corresponding relative difference is smaller than 20%. 
Several cases remain with relative differences above 20%, but they all correspond to matrix cells 
with very little flow (maximum flow in such cases is 108). 

Table 6 	Flow values in extreme heterogeneity solutions 

Mode_in 	Mode_out 	Min HET 	Max HET 	Relative 	Absolute 
Flow 	Flow Difference Difference 

Rail Rail 0 0 0 
Rail Ferries 249 249 0.00 0 
Rail Metro 7501 7501 0.00 0 
Rail Bus 2024 2024 0.00 0 
Rail Walk 2226 2226 0.00 0 
Ferries Rail 1672 1672 0.00 0 
Ferries Ferries 0 0 0 
Ferries Metro 2381 2381 0.00 0 
Ferries Bus 275 275 0.00 0 
Ferries Walk 1672 1672 0.00 0 
Metro Rail 736 838 0.13 101 
Metro Ferries 671 588 0.13 83 
Metro Metro 0 0 0 
Metro Bus 593 525 0.12 67 
Metro Walk 1000 1049 0.05 49 
Bus Rail 1304 1480 0.13 176 
Bus Ferries 1188 1039 0.13 149 
Bus Metro 17 0 2.00 17 
Bus Bus 0 0 0 
Bus Walk 491 481 0.02 11 
Walk Rail 50 98 0.65 48 
Walk Ferries 55 90 0.47 34 
Walk Metro 55 108 0.65 53 
Walk Bus 840 704 0.18 135 
Walk Walk 0 0 0 

These levels of inaccuracy can be taken as good enough for the subsequent dimensioning of the 
interchange. If this was not the case, more ratio statements would have been requested in order to 
diminish the possible variability of the estimated flows. 

For the purpose of dimensioning, the matrix obtained in the Min HET problem is used. 

Table 7 Final estimated flow matrix 

Sub_Rail Ferry Metro Bus Walk Sum_Row 

Sub_Rail 0 249 7501 2024 2226 12000 
Ferry 1672 0 2381 275 1672 6000 
Metro 736 671 0 593 1000 3000 
Bus 1304 1188 17 0 491 3000 
Walk 50 55 55 840 0 1000 
Sum_Col 3762 2163 9954 3732 5389 
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CONCLUSIONS 

A methodology has been presented to estimate flow matrices in cases for which very little 
quantitative information is available, namely at best the row and/or column totals. But judgment 
about the likely ratio of flows in pairs of cells can be used in connection with those constraining 
totals. 

The method presented here shows how to produce such a matrix, not only as a "best" estimate, but 
also measuring an indication of the stability of that estimation. 

An example for a public transport interchange was presented, corresponding to a 5 x 5 matrix. 
Real examples have already been performed for matrices up to dimension 8, and the level of 
difficulty in reaching the final solutions has always been relatively small. 

This method seems very promising for use in wider contexts, since it can be applied on top of any 
level of previous quantitative information for matrix estimation, and filling in the gaps with the 
adjective information extracted from the experts. Further research is going on in this direction. 
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