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Abstract 

This paper proposes a discrete choice model with probabilistic choice 
sets that is computationally tractable even with a large number of 
alternatives. The choice set formation process is modelled by a 
random constraint model with non-compensatory nature. The model is 
applied to destination choice analysis of vacation trips. 
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INTRODUCTION 

Discrete choice models have been successfully applied to various aspects of transport demand 
such as mode choice, destination choice, route choice, and car-ownership (Ben-Akiva and Lerman 
1985). Most of the successful applications are for regular trips (eg commuting) in the choice 
contexts with a relatively small number of available alternatives. The most successful application, 
for instance, is the mode choice behavior of commuting with a few available modes. 

However, there are many choice contexts in which the number of available alternatives is large 
and/or the choice set considered by the decision maker is uncertain to the analyst. Such choice 
contexts are typically found in the destination choice of non-regular trips such as vacation trips. 

The choice context with uncertain choice sets can be modeled by the probabilistic choice set 
(PCS) models that explicitly consider uncertainty of individual choice sets. The most general PCS 
models consider all the combinations of potential choice sets. The number of combinations, 
however, increases exponentially with the increase in the number of alternatives. Therefore, it is 
practically impossible to estimate the general PCS models with a large number of alternatives (eg 
more than four). The Dogit model (Gaudry and Dagenais 1979) is a special form of the PCS 
models which requires a strong assumption on the possible choice sets. 

The model proposed in this paper follows the basic PCS model paradigm in which the choice set 
formation model at the first stage and the discrete choice model at the second. The choice set 
formation model is a random constraint model that has non-compensatory nature among multiple 
constraints. More specifically, an alternative is included in the choice set if and only if all the 
latent conditioning measures of the alternative satisfy the criteria. The paper shows that this type 
of choice set formation process can be modeled by pairwise comparison of alternatives, which 
dramatically reduces the computational load of the PCS models. This enables one to apply the 
PCS models to the choice contexts with a large number of alternatives. The proposed method 
estimates the choice set formation model and the discrete choice model simultaneously using only 
the information of actual choices. 

A case study of destination choice of vacation trips is presented. It shows that the proposed PCS 
model is better fitted to the data than the ordinary discrete choice model with deterministic choice 
sets (DCS models). It is concluded that choice contexts with a large number of alternatives in 
many cases require explicitly modeling the choice set formation process and that the proposed 
method is applicable and effective to such contexts. 

PROBABILISTIC TWO STAGE CHOICE PARADIGM 

Concepts of two stage models 

The general form of the PCS models presented by Manski (1977) is as follows: 

Pn(i) _ 	Pn(iIC)Qn(CIG) 
CE G 

(1) 

where 

Pn(i) 	= 

Pn(iIC) = 

G 	= 

Qn(CIG) _ 

probability of individual n choosing i (iE M); M is the master set of alternatives; 

probability of individual n choosing i given choice set C; 

set of all non-empty subsets of M; and 

probability of individual n's choice set being C. 
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Conceptually the above model represents two stages of choice behavior. The first stage is the 
choice set formation process, of which model produces the probability Qn(CIG). The choice set 
termed here is the set of alternatives that the individual considers for choice in a particular 
situation. The second stage is the choice behavior given the choice set. This behavior is modeled 
by the discrete choice model that produces the choice probability Pn(iIC). 

The ordinary discrete choice analysis assumes that the analyst can find the true choice set for each 
individual by some deterministic rule. It implies in the above formulation: 

Qn(CIG) = 1 for a specific Cn; 0 otherwise 

then, the equation (1) is reduced to: 

Pn(i) = Pn(iICn) • 	 (2) 

Equation (2) is modeled by ordinary discrete choice models such as logit and probit models. 

Typical deterministic rules to specify the individual choice set in the mode choice context are, for 
example, i) an individual owning no driver's license or no car does not have the "drive alone" 
alternative in the choice set, ii) an individual living further than half a mile from the nearest bus 
stop does not have the "bus" alternative, and so on. 

Deterministic rules, however, are appropriate only for very limited contexts because the choice set 
is formed not only by objective physical constraints but also by informational and psychological 
restrictions. The informational restriction is particularly important when the master choice set 
consists of a large number of alternatives. Choices of destinations, routes, and residential locations 
are examples of such choice contexts where individuals are not likely to compare numerous 
alternatives by examining trade-offs among various attributes to search for the best alternative. 
When the deterministic rules are not applicable, the choice set will be probabilistic to the analyst 
and the model for the first stage should be formulated to explicitly evaluate Qn(CIG). 

The process of choice set formation can be viewed as the process of examining the restrictions, or 
equivalently satisfying various constraints. In this case, it is natural to consider that multiple 
constraints do not "compensate" one another. More specifically, when one of the constraints is not 
satisfied for an alternative, that alternative cannot be included in the choice set even if the other 
constraints are completely satisfactory. The choice set formation, therefore, bears the non-
compensatory nature among multiple constraints. 

The second stage may be formulated by a discrete choice model with the ordinary compensatory 
utility function. In the compensatory utility function, an "unattractive" attribute is compensated by 
an "attractive" attribute. 

A practical problem of the probabilistic choice set model (PCS model) formulated by equation (I) 
arises from the number of potential choice sets, or the elements of G. G is the set of all non-empty 
subsets of the master set. If there are three alternatives in the master set, then G consists of, 

G = { {1), {2}, {3}, {1,2}, (2,3), {1,3}, {1,2,3) } 

In general, if the master set consists of J alternatives, G has 2f-1 elements (-1 represents exclusion 
of the empty set). It implies that the choice context with 10 potential alternatives requires the 
summation of 1,023 terms in equation (1). This seems the main reason that general PCS models 
have not been practically applied although they are theoretically attractive. 

This paper develops an alternative derivation of a PCS model that alleviates the computational 
difficulty mentioned above. 

Choice set formation model 

Suppose that there are K independent constraints in the choice context of interest. Here, 
"independent" means K constraints have non-compensatory nature and statistical independence of 
each single constraint, as described below (Swait and Ben-Akiva 1987): 

VOLUME 1 319 
7TH WCTR PROCEEDINGS 



TOPIC 15 
TRAVEL CHOICE AND DEMAND MODELLING 

K 

qn(i) = 	qkn(i) 
k=1 

(3) 

where qn(i) is the probability of alternative i being included in the choice set of individual n and 
qkn(i) is the probability of alternative i satisfying the k-th constraint for individual n. 

Assume each constraint has the following conceptual structure: When a latent variable 
representing the desirability of the constraining condition exceeds a threshold value, then the 
constraint is satisfied. The latent variable can be expressed by, 

Ekn(t) = ak/ wkin- kin k=1, ''•,K 

where 

ak 	= vector of unknown parameters; 

Wkin 	= vector of variables affecting the restriction; and 

bkin 	= disturbance. 

Denoting the threshold for the k-th constraint by µk, we can express qkn(i) by, 

gkn(l) = Prob[Ekn(i) 

= Prob[ak wkin Skin > µk ] 

= Probkkin ak'wkin-µk ] 	k=1,...,K 

If we assume kin to be logistically distributed, qkn(i) is given by, 

qkn (t) = 	1 
1+e-(ak wk's Pk) 

which is analogous to the binary logit model. From equations (3) and (6) we obtain, 

K 

qn(i) _fl 	
1  

k=1 1+e-(ak wkin Pk) 

Then, the probability of individual n's choice set being C given the master set is expressed by, 

QnCIG) = 	1 	~gn(i)dici 1 qn(i)}1 dic] 
1-Qn(o)iE M 

where 

Qn(o) = probability of the random constraint model yielding the empty choice set; and 

dic 	= 1 if alternative i is an element of choice set C; 0 otherwise 

Choice probability of PCS model 

The second choice stage is modeled by an ordinary discrete choice model with the compensatory 
utility function: 

Uin = ß~Xin+Ein = Vin+Ein 
	 (9) 

(4)  

(5)  

(6)  

(7)  

(8)  
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where 

R 
	= vector of unknown parameters; 

Xin 
	= vector of explanatory variables; and 

Ein 	= disturbance. 

Assuming the disturbances to be i.i.d. Gumbel, the multinomial logit model is derived to express 
the choice probability of the second stage: 

Pn(iIC) = e ui" 	 (10) 
Lr eVh. 
he C 

Accordingly, the marginal choice probability of the two stage PCS model is expressed by 
substituting equations (8) and (10) into (1): 

Pn(i) _ E Pn(iIC)Qn(CIG) 
Ce G 

= 	1 	E 	
eVin  11 [gn(I)d'cil-gn(1)Î1 d'ci 

1-Qn(0)CEG E eVbnjEM 
hE C 

If the number of alternatives in the master set is small enough (eg less than five), equation (11) 
may be directly evaluated to calculate the likelihood. However, when the number of alternatives 
increases, the number of possible choice set, or the number of elements in G, increases 
exponentially and the direct evaluation of equation (11) becomes virtually impossible. 

ALTERNATIVE DERIVATION OF TWO STAGE PCS MODEL 

Deriving choice probability 

Ordinary discrete choice models can be derived by pairwise conditions of alternatives in terms of 
utility as shown below, 

P(i) = Prob[Ui>_U1, Ui>_U2, • • •,Ui?UJ ] 	 (12) 

Similarly, the PCS model can also be derived by pairwise comparison of alternatives. The 
situation of alternative i being preferred to alternative j, in this case, includes the following two 
possible cases: i) both alternatives i and j are included in the choice set and alternative i has a 
greater utility value than alternative j; or ii) alternative i is included in the choice set but 
alternative j is eliminated at the first stage of choice set formation. Equivalently, the marginal 
choice probability can be given in the following expression: 

1 	Prob(ie Cn)x = 	x Prob 

n 
E M, 

1(1ECn)n(Uin?Utn) )u( i  )LA 10 CO 
and 	 ll 

((2e C )n(Uin?U2n) )u{20 Cn n 	 1 
and 

and 
_((Je Cn)n(Uin?UJn) )U{JO Cn }_ 

ECn)n(Ejn5-Uin UjniÆin) }VIj~Cn~ 

(13) Pn(i) 
1-Qn(o) 

1 	x 	Pro qn(i)x 
1-Qn(o) 
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where Cn is the latent true choice set of individual n. 

Taking the conditional probability on the random component of utility, Ein, equation (13) can be 
rewritten as: 

~ 

Pn(i)= qn(1) 	f(Ein) 11 {9nU)F(Vin Vjn+Ein)+(1-9nÛ)) }dein 
1-Q,(0) jeM, j,i 

(14) 

where f(.) and F(.) denote the PDF and CDF of E's, respectively. If we assume the i.i.d. Gumbel 
E's, as usual, we obtain, 

Pn(i) _  9n(i)  
1-Qn(0) 

e-Ein e e ein x ~ [gn(1)e-e V,n+Vi„-Ein+{ 1 -9n(1)}1dEin 
jeM, 

(15) 

= 	9n(1 ) 	e-Ein e-e-Ein x {I  
1 ~ {1-gn(j)} 	 jeM, j#I 

jEM  

[gn(j)e-e-Vcn+Vln-Ein+{ 1-gn(1) ddEin 

Although computation of equation (15) requires a single integration with respect to Ein, it does not 
need to evaluate the choice probability for all the possible choice sets that sum up to 2J-1. 
Therefore, the proposed method is applicable to the choice context with a large number of 
alternatives. To ensure that equation (15) is equivalent to equation (11), the case of three 
alternatives is demonstrated below: 

Pn(1) 

=  
9n(1) 	f(E1n){9n(2)F(V1n+V2n+E1n)+(1-90(2))}{9n(3)F(V1n-V3n+Eln)+(1-gn(3))}dE1n 

1-Q-,(0) _m 

=  gn(1)  [qn(2 9n(3) 	f(Eln)F(Vln-V2n+Ein) F(Vlri V3n+Eln)dEln 
1-Qn(0)  

+9n(2) (1-gn(3))1 f(Eln)F(V1n-V2n+Eln)dE1n+(1-gn(2))gn(3) I AEI n)F(V1n-V3n+Eln)d£1n 

+(1-qn(2)) (1-gn(3))rf(Eln) del n] 

= 	1 	[qn(1 )qn(2) gn(3) 	vi~+ev2n}~V3n +9n(1)9n(2)(1-9n(3)) 	ve~u2~ 1 Qn(~) 	 e 	 e 

+ gn(1)(1-9n(2)) 9n (3)evev+e'nv3, + gn(1)(1-9n(2))(1-9n(3))] 

= 	1 	[Pn (11{ 1,2,3 })Q({ 1,2,3 }IG) + Pn (11{ 1,2 })Q({ 1,2 }IG) 
1-Q0(0) 

+ Pn (11{ 1,3 })Q({ 1,3 )IG) + Q({ 1 }IG] 
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Estimation methods 

The unknown parameters in both choice set formation model and discrete choice model are 
estimated by the maximum likelihood method. The likelihood of observed choices is given by, 

~N7 
1 = 11 Pn(tn) 

n=1 

where in is the chosen alternative by individual n and Pn(i) is given by equation (15). 

In case the information on individual choice sets is available in addition to the choice data, then, 
the choice set formation model can be separately estimated using the following likelihood: 

~N( 

Li = 11 Qn(CnIG) 	 (18) 
n=1 

where Qn is given by equation (8) and Cn is the choice set of individual n given by the data. Then, 
one can substitute the parameter estimates of the choice set formation model into equation (15) 
and estimate the parameter of the discrete choice model by maximizing equation (17). 

EMPIRICAL ANALYSIS 

Description of the case 

The proposed model is applied to destination choice of vacation trips. Destination choice is a 
typical example of choice contexts with a large number of potential alternatives. Furthermore, it is 
usually very difficult for the analyst to identify individual choice sets for infrequent behavior such 
as vacation trips. 

In the empirical analysis presented in this paper, alternative destinations are defined as 18 
partitioned regions of Japan. A survey on domestic multi-day vacation trips was conducted for 600 
college students. Surveyed items include characteristics of the trips during the past year, subjective 
choice sets at the time of the trip, and subjective ratings of the 18 regions with respect to vacation 
potentials. The subjective choice sets were obtained by asking other regions that the respondent 
wished to visit at the time of the decision making. Appropriateness of using this question as the 
indicators of the latent choice sets is discussed later. 

Two composite variables, attractiveness and perceptual distance of each region, are calculated 
using the subjective rating data. The subjective ratings were obtained with respect to scenic, 
historical, gastronomic, cultural and athletic attractiveness of each region and perceptual distance 
of each region from the trip origin. Using these ratings as indicators of the two latent composite 
variables, the linear structural equation model is applied to estimate the latent composite variables. 
(The presentation of this analysis is not the scope of this paper. Refer to Morikawa et al. (1990) 
for explanation of this methodology). 

Model 

The choice set formation model is composed of two constraints: information availability and 
minimum attraction. The probability that region i is included in the choice set of individual n is 
expressed below: 

qn(i) 	= tlln(t)(12n(i) 	 (19) 

= 	1 	X 	1  
1+e-(a;inf;~ µ;) 	1+e (azattrct;~ µz) 

(17) 
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where 

= amount of information on vacation possibility of region i; (this is approximated by 
the frequency of appearance of the region in travel guidebooks and advertisements 
of travel agents), and 

attrct 	= attractiveness of region i (this latent variable is estimated by the above mentioned 
model). 

The utility function of the discrete choice model is specified as below: 

Uin = (31attrct;n+(32distin+03hotel;+ß4costi+E;n  (20) 

where 

dist;n 	= perceptual distance of region i (estimated by the above mentioned model); 

hotel; 	= number of rooms of hotels in region i; and 

costi 	= average room rate of hotels and inns in region i. 

Estimation results 

The first column of Table 1 shows the parameter estimates of the two stage PCS model by the 
sequential method. In the first step the choice set formation model given by equation (8) is 
estimated by regarding the stated subjective choice set as the indicator of the true choice set (the 
likelihood is given by equation (18)). Then, the estimated parameters of the choice set formation 
model are substituted in equation (15) and the parameters of the discrete choice model are 
estimated by equation (15) (the likelihood is given by equation (17)). The result shows that 
alternatives are included in the choice set when the amount of information and the attractiveness 
exceed positive threshold values. 

The second column of Table 1 shows the PCS model estimated by the simultaneous method. It 
uses only the information of "choice" to estimate both the choice set formation and discrete choice 
models. The parameter estimates have the correct signs, indicating the validity of the proposed 
method. The attractiveness variable is insignificant in the choice set formation model probably 
because the variable also appears in the discrete choice model. 

Table 1 	Estimation results (t-statistics in parentheses) 

Parameter Variable 
PCS modes DCS models 

sequential 
estimation 

simultaneous 
estimation 

full choice 
set 

stated choice 
set 

at inf 0.777 (8.0) 0.545 (1.9) 
Choice set threshold 2.25 (31.8) 1.49 (2.7) 
formation stage a2 attrct 0.105 (2.7) 0.0120 (0.1) 

I12 threshold 1.80 (47.8) 0.092 (-0.3) 

P, attrct 4.43 (2.3) 0.417 (2.5) 0.384 (1.2) -0.0606 (0.2) 
Choice stage 132 dist -3.82 (-2.5) -0.351 (-2.9) -0.720 (3.0) -0.434 (-2.0) 

133 hotel 2.00 (4.0) 0.245 (4.0) 0.264 (2.3) 0.0293 (0.8) 

R4 cost -3.87 (-3.3) -0.579 (-4.5) -0.600 (3.0) 

Ordinary MNL models with deterministic choice sets (DCS models) are shown in the third and 
fourth columns of Table 1. The model of the third column assumes that every individual has the 
full choice set consisting of 18 alternatives. The model of the fourth column assumes that the 
stated subjective choice set is the true (deterministic) choice set. Parameter estimates of DCS 
models are less significant than the PCS models. Particularly, the fourth model yields 
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unacceptable estimation results, which may imply that the stated subjective choice set is not a 
proper indicator of the true choice set in this data set. In general, it seems difficult to elicit the 
latent choice set by directly questioning it to the respondent. 

Hence, in case that reliable information on individual latent choice sets is not available, the 
simultaneous estimation method that does not require such information may result in more reliable 
parameter estimates. 

CONCLUSION 

This paper proposed a two stage choice model with probabilistic choice sets and its practical 
estimation method. In the proposed two stage model, each stage employs a different decision 
making protocol. The first stage, or choice set formation process, is characterized by the non-
compensatory rule among the constraints. It represents that the choice set is formed by the 
alternatives which satisfy every constraint. The second stage is modeled by ordinary discrete 
choice models with the utility maximization process that is characterized by the compensatory 
rule. 

PCS models that have been proposed thus far cannot virtually be estimable when there are a large 
number of alternatives (eg more than four) unless very restrictive assumptions on possible choice 
sets are made (eg Dogit model). The method proposed in this paper compares alternatives in 
pairwise and derives a computationally tractable form even for a large number of alternatives. 

The model was applied to the destination choice of vacation trips that typically has a large number 
of alternatives and uncertain individual choice sets. According to the empirical analysis, the 
proposed model yielded reasonable parameter estimates and better fit to the data than the DCS 
models. 

This research is the first attempt of applying the proposed PCS model and, therefore, problems to 
be solved are left out for further research. They include development of more efficient estimation 
programs and more persuasive empirical evidence of the effectiveness of the method. 
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