UNE NOUVELLE APPROCHE METHODOLOGIQUE POUR LA DEMANDE DE TRANSPORT URBAIN DANS LES PAYS DU TIERS MONDE

M.A.C.N.Matos¹, F.A.C. Mora-Camino²

1) M.A.C.N. Matos COPPE/UFRJ C.P. 68508 21945-Rio de Janeiro Rio de Janeiro, Brésil 2) F.A.Mora-Camino COPPE/UFRJ C.P. 68511 21945-Rio de Janeiro Rio de Janeiro.Brésil

I. Introdução

La croissance explosive des métropoles dans les pays en voie de développement a conduit de façon générale à une inadéquation complète du système de transport urbain, celui-ci nécessitant alors d'une nouvelle conception. Ainsi, pour nombre de ces métropoles une planification stratégique du transport urbain fait aujourd'hui cruellement défaut. L'un des principaux éléments d'une telle planification est constitué par la description (la prévision) de la demande de transport à moyen et long terme. Pour celail existe toute une série de modèles développés aux Etats Unis ou en Europe (Modèles agrégés à quatre étapes, modèles désagrégés, etc ...), pourtant ceux-ci ne semblent pas tenir compte des caractéristiques sinhérantes aux métropoles du tiers monde: grande partie de la population peut présenter des conditions de vie proches du niveau de subsistance ou est constituée majoritairement de jeunes non productifs (chômeurs), la part du transport collectif par autobus est très largement majoritaire, les indices de motorisation restant faibles (même si les conditions de trafic sont complètement chaotiques). Tout ceci conduit à un comportement extrêmement différent des usagers du systême de transport.

Dans cette communication une nouvelle approche est proposée pour la prévision de la demande de transport urbain dans les métropoles des pays du tiers monde.

Le modèle proposé reprend en partie la philosophie des modèles à quatre étapes, principalement en ce qui concerne la classe motorisée et utilise deux principaux procédés:

- des modèles de prévision de type "agrégés directs" en ce qui concerne la demande globale entre de zones de la ville. Ce genre de modèles permet de tenir compte pour chaque type de déplacement (domicile/travail/domicile, domicile/école/domicile et autres déplacements non captifs) d'élements particuliers relatifs à l'équilibre de la cité et permet d'une hiérarchie dans les déplacements (travail, éducation, autres) effectivement observée.

- un modèle d'optimisation d'une fonction entropie conditionnelle qui permet de compatibiliser les prévisions de flux obtenus à l'aide des modèles du type antérieur et de réaliser la prévision de la répartition modale.

Le modèle global proposé utilise des expressions analytiques extrêmement simples et peut être utilisé sur micro-ordinateur.

Une étude de cas réalisée sur une ville de taille moyenne (350.000 habitants) du Brésil est présentée.

II. Considérations Méthodologiques Initiales

Le modèle de prévision de demande proposé ici tend à satisfaire les besoins en informations d'entrée pour l'élaboration d'un plan stratégique de transport. Ainsi, il sera suffisant, pour un horizon souvent supérieur à 10 ans, d'avoir des informations agrégées au niveau des zones indiquant des ordres de grandeurs plutôt que réellement des estimations précises (et sûrement illusoires) des niveaux de demande.

Ainsi, l'approche méthodologique proposée ici se caractérise par un modèle de prévision "direct" des flux de transport qui correspondent à l'équilibre à long terme entre l'offre et la demande de transport.

L'établissement de cet équilibre peut être vu comme un processus itératif ou intervienent tant la structure et la capacité du système comme les couts d'utilisation et de congestion.

L'élaboration du modéle de prévision suit trois étapes. La première étape consiste en la calibration initiale des modèles de demande directs, l'étape suivante consiste en l'élaboration de prévisions de flux entre les diverses zones pour chaque modalité de transport. Finalement, une derniere étape permet la compatibilisation de ces prévisions au niveau de chaque zone.

Le modèle agrégé direct a été choisi en fonction de sa simplicité et de sa facilité d'utilisation, ce qui permet entre autre de diminuer les besoins de données de base et le volume des calculs à réaliser, permettant ainsi une concentration plus importante sur l'analyse du problème.

Ce type de modèle est en fait un modele de simulation analytique qui relie de façon explicite les variables relatives au système de transport et les caractéristiques socio-économiques d'intérêt.

Ce genre de modèle ne tient pas compte des restrictions relationnées aux niveaux de production et d'attraction de voyages de chaque zone.

III. Le Modèle de Demande Agrégé Direct Proposé

Ce modéle distingue la population de faible revenu(inférieur à 200 U\$ par famille et par mois) et la population de revenu plus élevé.

En ce qui concerne la population de faible revenu, l'on considère les voyages réalisés en fonction d'une activité rémunérée et les autres déplacements. L'on suppose que le volume de ceux-ci peut être calculé à l'aide des modéles de type gravitational suivants:

a) deplacements domicile/travail/domicile (ℓ = 1, m = 1):

$$T_{ij}^{m\ell} = \alpha_i^{m\ell} \cdot P_i^{\beta_1^{m\ell}} \cdot V_j^{\beta_2^{m\ell}} \cdot \exp[\gamma^{m\ell} \cdot (R_i^{\ell} - A_i^{\ell} - C_{ij})]$$
 (1)

$$\sin NS_{ij}^{m\ell} = R_i^{\ell} - A_i^{\ell} - C_{ij} \ge 0$$

$$\mathbf{T}_{ij}^{m} = 0 \qquad \operatorname{si} \, \operatorname{NS}_{ij}^{m\ell} = \mathbf{R}_{i}^{\ell} - \mathbf{A}_{i}^{\ell} - \mathbf{C}_{ij} \leq 0$$
 (3)

b) deplacements pour d'autres motifs ($\ell = 1, m = 2$):

$$T_{ij}^{m} = \gamma_{i}^{m\ell} \cdot P_{i}^{\beta_{1}^{m\ell}} \cdot V_{j}^{\beta_{2}^{m\ell}} \cdot \exp\left[\gamma^{m\ell} \left(NS_{ij}^{m\ell} - C_{ij}\right)\right]$$
(4)

$$si NS_{ij}^{m\ell} - C_{ij} \leq 0$$

$$T_{ij}^{m\ell} = 0 \text{ sinon } i=1, ..., N, j=1 ... N$$
 (5)

où N est le nombre de zones de trafic constituant la région étudieé,

Tij est le volume de déplacements (transport en commun) entre les zones i
e j pour le motif m,

P; est la population de faible revenu de la zone i

V; est le niveau d'attraction absolu de la zone j (le nombre d'emplois,

le nombre de places disponibles dans les écoles de la zone j),

 $R_{\mathbf{i}}^{\ell}$ revenu moyen des ménages de classe ℓ dans la zone \mathbf{i} ,

 \mathbf{A}_{L}^{ℓ} cout moyen du logement et de l'alimentation pour la classe ℓ dans la zone i,

 c_{ij} cout mensuel du transport entre les zones i et j. $\alpha_i^{m\ell}$, $\gamma_i^{m\ell}$, $\beta_k^{m\ell}$, $\gamma_i^{m\ell}$ sont des paramétres positifs à estimer.

En ce qui concerne la population de faible revenu, l'existence d'un revenu résiduel disponible ($R_1^{\ell}-A_1^{\ell}$) sera déterminante pour la réalisation des déplacements à l'aide du système de transport en commun qui en fait, dans les pays du tiers-monde, constitue pratiquement l'unique mode de transport motorisé à sa disposition.

En ce qui concerne la population de revenu moyen ou élevé, les déplacements se feront suivant divers modes de transport concurrents (véhicule particulier, transport en commun, taxi, etc ...). Le choix de l'un de ces modes ne dépendra plus uniquement d'un calcul économique, mais aussi des caractéristiques de confort et de sécurité de celui-ci. Ainsi, l'on propose ici d'utiliser un modèle de type "modalité abstraite" pour expliquer le choix de ces usagers (ℓ = 2):

$$\mathbf{T}_{i,i}^{\ell k} = \delta_{i}^{k\ell} \cdot \mathbf{P}_{i}^{k\ell} \cdot \mathbf{V}_{i}^{k\ell} \cdot \mathbf{V}_{i}^{k\ell} \cdot \mathbf{f}(.) \cdot \mathbf{g}(.)$$
 (6)

ou $\,\delta_{\,i}^{k\ell}$, $\beta_{\,1}^{k\ell}$, $\beta_{\,2}^{k\ell}\,$ sont des paramétres positifs à être estimés,

f(.) est une fonction représentative des caractéristiques da mode-base de transport,

g(.) est la fonction de répartion modale.

Par exemple il a été suggéré (Cavalcanti, 83), pour ces deux dernières fonctions les expressions suivantes:

$$f(.) = t_{ij}^{* \tau_1} \cdot C_{ij}^{* \tau_2 / \ell_n NS_{ij}^{k\ell}}$$
(7)

$$h(.) = (t_{ij}^{k}/t_{ij}^{*})^{T_{ij}^{3}} \cdot (c_{ij}^{k}/c_{ij}^{*})^{T_{ij}^{4}/\ell n \text{ NS}}_{ij}^{k\ell}$$
(8)

où t_{ij}^k est le temps moyen de transport entre i et j par le mode k, t_{ij}^* est le temps moyen de transport entre i et j par le mode-base, c_{ij}^k est le côut mensuel moyen de transport entre i et j par le mode k, c_{ij}^* est le côut mensuel moyen de transport entre i et j par le mode-base,

 τ_1 , τ_2 , τ_3 et τ_4 sont des paramétres à être estimés.

Ainsi, le modéle de demande agrégé direct proposé ici présente en ce qui concerne la population de faible revenu des considérations comptables strictes qui correspondent à la dure réalité des pays du tiers monde.

IV. Le Processus Global d'Elaboration des Prévisions

Le modéle présenté ci-dessus ne tient pas compte de façon explicite des restriction de production et d'attraction de déplacements de chaque zone. Ainsi, il est nécessaire d'ajuster ces prévisions en fonction des données de production et d'attraction obtenues d'une étape antérieure de l'étude. Pour cela, l'on peut définir le flux total entre deux zones i et j utilisant le mode k de transport:

$$f_{ij}^{k} = \sum_{\ell=1}^{2} T_{ij}^{\ell k}$$
 $k = 1, 2 \quad i = 1 \dots N, j = 1 \dots N$ (9)

Utilisant alors le principe de maximisation de l'entropie, comme proposé initialement par Wilson, il est possible de formuler le problème d'estimation suivant:

$$\max_{\mathbf{max}} - \sum_{k=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^{K} T_{ij}^{k} \log \left(T_{ij}^{k}/f_{ij}^{k}\right)$$

$$\left[T_{ij}^{k}\right]$$
(10)

avec
$$\sum_{k=1}^{2} \sum_{k=1}^{2} T_{ij}^{k} = 0, \qquad i = 1, \dots, N$$
 (11)

$$\sum_{k=1}^{2} \sum_{i=1}^{N} T_{i,j}^{k} = D, \quad j = 1, ..., N$$
(12)

et
$$T_{i,j} \ge 0$$
 $i = 1, ..., N, j = 1, ..., N$ (13)

ou 0; est le volume de déplacements produits par la zone i,

D; est le volume de déplacements se destinant à la zone j, T_{ij}^k est le flux de déplacements entre i et j utilisant le mode de transport k.

Ici, fi joue le rôle d'une distribution a priori de ces mêmes flux de déplacements. La résolution de ce problème correspond en fait à la recherche de la distribution de flux qui maximize la probabilité conditionnelle de cette même distribution, donnée par l'expression:

$$P[(T_{ij}^{k}) | (\tilde{f}_{ij}^{k})] = \prod_{k=1}^{2} \prod_{i=1}^{N} \prod_{j=1}^{N} (\tilde{f}_{ij}^{k})^{T_{ij}^{k}} \frac{T!}{\prod_{i=1}^{2} \prod_{j=1}^{N} \prod_{i=1}^{N} \prod_{j=1}^{K} t_{ij}^{k}!}$$

$$(14)$$

avec
$$\tilde{\mathbf{f}}_{\mathbf{i}\,\mathbf{j}}^{\mathbf{k}} = \mathbf{f}_{\mathbf{i}\,\mathbf{j}}^{\mathbf{k}} / \mathbf{T}$$
 (15)

ou
$$T = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{2} T_{i,j}^{k}$$
(16)

La solution du problème (10)-(11)-(12)-(13) étant de la forme (conditions de Lagrange):

$$T_{ij}^{k} = K.u_{i}.v_{j}.f_{ij}^{k}$$
(17)

il sera possible d'utiliser l'algorithme classique de Furness pour le résoudre. Celui-ci peut être résumé de la façon suivante:

1) faire initialement:

$$T_{ij}^{k(1)} = 0_{i} \cdot f_{ij}^{k} / \sum_{\ell=1}^{2} \sum_{m=1}^{N} f_{im}^{\ell}$$
(18)

avec
$$\mathbf{F}_{.jj}^{k} = \sum_{\ell=1}^{2} \mathbf{T}_{ij}^{k}(0)$$
 (19)

2)
$$T_{ij}^{k}(2m) = D_{j} \cdot T_{ij}^{k}(2m-1) / \sum_{\ell=1}^{2} \sum_{m=1}^{N} T_{mj}^{\ell}(2m-1) \quad m \ge 1$$
 (20)

3)
$$T_{i,j}^{k}(2m-1) = 0_{i} \cdot T_{i,j}^{k(2m)} / \sum_{\ell=1}^{2} \sum_{m=1}^{N} T_{i,m}^{\ell}(2m) \qquad m \ge 1$$
 (21)

Si
$$||[T_{ij}^{k}]^{(2m+1)}] - [T_{ij}^{k}]^{(2m)}||$$
 est suffisamment petit, $[T_{ij}^{k}]^{(2m+1)}|$

est la solution, sinon, l'on retourne en 2. Le schéma global du processus de prévision de demande est présenté sur la figure 1. Calibration des Modèles Directs de Demande

Prévision des flux entre paires origine-destination

Compatibilisation des prévisions à l'aide du modèle entropique

Prévisions Finales des Flux de Transport

Figure 1: Processus Global de Prévision de Demande Proposé

V. Étude de Cas

L'étude de cas considéréeest relative à la ville de Juiz de Fora dans l'état du Minas Gerais à environ 200Km de Rio de Janeiro. Cette ville est caractérisée par une activité industrielle importante (industrie textile, métallurgie, industries de transformation) au sein d'une riche région agricole (café, élevage boyin) et elle constitue un centre culturel et universitaire important à mi-chemin entre Rio de Janeiro et Belo Horizonte. Cette ville a subi une extension extrêmement rapide qui a bouleversé complètement sa structure. Ainsi, de 1978 a 1980, le Ministère des Transports du Brésil a effectué une étude de restructuration du système de transport de Juiz de Fora, introduisant notamment un service de transporturbain par autobus et remodelant complètement le plan de circulation de la cité. La ville a été divisée en 59 zones de trafic regroupées in 9 régions délimitées par la topographie montagneuse du site. Les modéles directs de prévision de demande ont été calibrés a partir des données relevées en 1978 et représentés sur les tables 1, 2, 3 et 4. La calibration de ces modeles a conduit aux resultants suivants en ce qui concerne les déplacements entre le lieu de domicile et de lieu de travail:

$$\alpha = 3.64, \beta_1 = 0.911, \beta_2 = 0.602, \gamma_1 = 0.730 \times 10^{-3}$$
 (22)

Supposant que ces coefficients restent invariants au cours du temps, il est possible, utilisant les prévisions relatives à la population par zone, au niveau de l'emploi et de l'enseignement par zone, de réaliser des prévisions à moyen et long terme sur les niveaux de demande de transport pour cette ville.

ZONE DE TRAFIC	POPULATION (P _i)	REVENU MOYEN (R _i)	LOYER MOYEN (A _i)	NIVEAU DE L'EMPLOI (E j)	PLACES À L'ÉCOLE (M _j)
1	8657	6.084,00	2.500,00	25175	23678
2	8854	5.522,00	2.350,00	9680	8001
3	47125	4.462,00	1.890,00	2960	12374
4	27361	4.689,00	1.505,00	7411	6345
5	26878	5.501,00	1.880,00	6171	9967
6	6671	.557,00	1.500,00	122	8926
7	13707	4.789,00	1.430,00	8288	7526
8	18041	4.259,00	1.310,00	3512	6796

Table 1: Données Socio-économiques

DESTINATION ORIGINE	1	2	3	4	5	6	7	8
1	92	102	125	98	103	103	103	104
2	102	113	103	202	202	207	113	104
3	120	103	125	125	224	229	113	167
4	98	202	125	98	224	239	239	154
5	103	202	224	224	113	113	202	154
6	103	207	2 29	239	113	103	113	161
7	103	113	113	239	202	113	113	161
8	104	104	167	154	154	161	161	104

Table 2: Matrice des couts de transports par autobus (Cr\$,1978)

DESTINATION ORIGINE	1	2	3	4	5	6	7	8
1	16885	5374	1390	4407	3962	74	3468	1117
2	9277	4227	1075	2492	1845	43	3081	998
3	29669	13357	5161	9273	6126	117	11798	3759
4	19862	6805	1934	7427	4179	74	4743	1554
5	230 23	6683	1770	6115	8672	127	4421	1424
6	3410	1216	311	870	977	67	896	288
7	8042	4169	1307	2250	1642	39	5516	2255
8	7064	3672	1194	2021	1447	368	5768	5769

Table 3: Matrice des Flux Domicile/Travail

DESTINATION ORIGINE	1	2	3	4	5	6	7	8
1	17540	5639	3465	4573	5427	2140	4061	2079
2	9290	3948	2307	2506	2593	1118	3089	1589
3	25641	10789	8343	7752	7322	2863	9774	5011
4	17149	5869	3998	5866	4956	1891	4467	2333
5	20358	6069	3811	5324	8934	2944	4446	2276
6	2221	784	466	560	777	559	621	317
7	7630	3580	2379	2128	2167	1023	4422	2734
8	6373	2780	2031	1803	1825	828	4126	4721

Table 4: Matrice des Flux Domicile/École

VI. Conclusion

Dans cette communication une nouvelle approche pour la prévision à moyen et long terme des niveaux de demande de transport urbain est proposée. Cette approche présente d'importants avantages:

Divers points d'ordre pratique ou théorique restent à investiguer. L'on peut citer par example la robustesse dans le tempos des formes

⁻ simplicité d'utilisation, ne requérant qu'un volume restreint de données - cohérence des prévisions face au calcul strict des comptes des ménages de faible revenu.

analytiques obtenues pour les modéles de demande directs.

REFERENCES

- 1. Cavalcanti Netto, M.A. (1983) "Um Modelo de Previsão de Demanda para o Planejamento Estratégico do Transporte Urbano", Tese de Mestrado, COPPE/UFRJ. Rio de Janeiro, Brasil.
- 2. Choukroun, J.M. (1975) "A General Framework for the Development of Gravity Type Trip Distribution Models" Regional Science and Urban Economics, Vol. 5.
- 3. Furness, K.P. (1965) "Time Function Iteration" Traffic Engineering and Control" Vol. 7, no 7.
- 4. Hendrickson, C.; Carey, M. e Siddarthan, K. (1981) "A Method for Direct Estimation of Origin/Destination Trip Matrices" <u>Transportation Science</u>. vol. 15, no 1.
- 5. Hugonnard, Jean-Christophe (1983) "Planification Strategique et Choix du Mode de Transport Collectif(RATP France) CODATU II Caracas, Venezue la.
- 6. Mora-Camino, F.A.; Netto de Mattos, M.A.C. (1983) "Modelo de Previsão da Demanda para Planejamento Estratégico do Transporte Urbano". Simpósio do IPT, São Paulo, Brasil.
- 7. Plano Geral de Transportes (1980) Prefeitura Municipal de Juiz de Fora relatórios finais do PAITT, PRTC, PMLP.
- 8. Sterzer, F. (1976) "Parameter Estimation for the Constrained Gravity Model: A Comparison of Size Methods" Environment and Planning A, vol. 8.