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It has been more than a decade since the disaggregate behavioral models 
based on random utility theory were developed. With these models it becomes 
possible to analyze and to predict travel behavior. Especially in mode 
choice studies, many good results have been presented. Theorefore it is 
considered highly possible that the aggregate modal-split models in the con-
ventional procedures could be replaced by disaggregate ones. 

In Japanese cities of which population is more than 300 thousands, 
person-trip surveys are carried out once a decade, so that present OD tables 
are available for urban transportation planning  in these cities. Using the 
data, four-step procedure could be employed to forecast future travel demand. 
Although for the step of the modal split disaggregate models are often 
utilized, the principal method for the step of trip distribution is usually 
the aggregate models because of a certain difficulties in estimation with 
disaggregate destination choice models. 

Ben-Akiva (1973), McFadden (1974) and others show strong points of dis-
aggregate destination choice models, but important issues from the view point 
of practical sense are remained unclear. The main purpose of this paper is 
to establish the disaggregate demand forecasting techniques for OD tables. 

In Section 2 a methodology to predict trip distribution with disaggre-
gate models is discussed and in Section 3 we describe the sampling methods of 
choice alternatives, which reduces the time for the estimation of parameters 
in the case where the size of choice set is very large. 

In the following  three chapters we examine the practicality of destina-
tion choice models for the prediction of trip distribution. Section 4 
presents the case studies of a new methodology developed in Section 2. In 
Section 5 we examine the tolerance to the reduction of choice alternatives 
by considering the stability of parameters. Further, in Section 6 a sample 
size which is enough to estimate trip distribution is discussed in the case 
that disaggregate destination choice model is utilized to predict OD tables. 

Finally, Section 7 presents conclusions of this paper. 

2. New Approach to Forecast Trip Distribution with Disaggregate Model 

The aggregation method which we develop in this paper is to predict trip 
distribution so as to maximize total utilities in a population under the 
various restrictions. 

Firstly, we consider the random utility Ujn l i  of destination j for trip 
maker n in orign i;  it can be written as, 

Ujnli = V
jnli  + Ejnli 	

(1) 

In the above, if the stochastic term Ejn l i  follows Gumbel distribution as, 

-X(e + a.) 
Prob[Ejn l i  < el = e-e 	jnll 	 (2) 

the expected value of maximum utility MUnl i  finally can be expressed as 
follows, 

MUn l i  = E[max Ujnli ] _ 1 In 	eaV3nli 
QED 	jED 

(3) 
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MUnli represents the choice situation of trip maker n, and also is reffered 
to as Consumer's Surplus (Williams (1977)), Satisfaction function(Daganzo 
(1979)), or Accessibility (Ben-Akiva & Lerman (1979)). 

Secondly, we consider the expected value in a population. For this 
derivation, some aggregation techniques are needed and we adopt classifica-
tion method which is one of the most efficient techniques; it has some 
generalities so that it includes Naive and Enumeration methods as its special 
cases. The validity of this method has been proved in many recent studies. 

Now, we classify a population by G segments in each origin zone i. In 
this case, the utility MUgli is defined as, 

MU 	= 1 In Y eXVigli 	 (4) 
jED 

where 
VUgli 

is a strict utility of destination j for segment g in origin i. 
Thus, MUi (the utility in origin i) is, 

MU.= ti. 2w. MUg i 
	 (5) 1

g 
where wig is the share of segment g in origin i ( gwig = 1), and ti. is trip 
generation of zone i. In eq.(5), it is assumed that the utility function has 
additive property. 

Further, under this assumption a total utility can be shown that, 

MU = 	MU. 	 (6) 
i 

In addition in eq.(4) we can obtain choice probability Pjgli from the 
property of MUgli• 

BMUgIi - 	
eaVjgli  

Pjgli BVjg li 	2 e
XVJgli 

jED 
Since we assumed that the random term follows the Gumbel, Logit Model is 
derived here. 

Now transforming eq.(7) into, 

In Pjgli = XVjgli 
- In Z eXV3g1 1 	 (8) 

jED 

further, calculating the expected value of both sides of eq.(8) with Pjgli, 
then 

~ 
Pjgll 

1nPjg l i 	2 
Pjgl

i(aVj
gli - 

ln ~ eXVjgli) 
jED 	jED 	jED 

a2 
PJSI VJgI 

- In2 eX1j 

	

1 	
gli 	 (9) 

jED 	1 	jED 

By substituting (9) into (6), MU is rewritten as follows, 

	

MU = 2 ti 2 wig(- 1 2 P. . 1nP. 	+ 2 P. 
	V. 	

) 	(10) 
iED g 	jED 	. jED 

If parameters of destination choice model have already been estimated, 
MU is derived by summing up utilities, which are calculated with the average 
values of characteristics of each segment. 

This is the aggregation technique mentioned before, however it should be 
noted that calculated distribution of trips does not always coincide with 

(7) 
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(17) 

observed one. For example, when the trip attractions are also given, those 
calculated from the estimated OD trips are generally different from 
observations. 

For the reasonable solution of such a problem as above and to make 
estimation of trip distribution precise, we consider the following method. 

The amount of OD trips can be estimated at the point that MU is maxi-
mized under the restrictions of total trips (ex. trip attraction). 

For example, we consider the following maximization problem using (10), 

Max MU = Z t. 2 wig( - 	2 P
Jg I i

lnP
Jgli 

+ Z P. . VJgli ) 
	(11) 

Pjg l i 	iED 1.g 	jED 	JED 

s.t. 	Dt. 2 w. P. . = t.. 	no 
	 (12) 

g 

In this case, eq.(12) is the restriction on the trip attraction. In eq.(11), 
MU is maximized by Pjgli to estimate a new distribution pattern, thus Pjgli 
need not be in Logit form. 

By the introduction of multipliers, Yj and nig , Lagrangean L is 
expressed as, 

L(p,Y,n) _ 	ti.2 wig( 	
~ 
2 PJgIilnPjg li + 2 

PJgIiVJgIi ) lED g 	jED 	jED 

+ Z y. (t.- ; t. Z w. P.) + Zen. ( 27 P. 	- 1) 	(13) 
jED J J jED 1.g ig Jgli 	ieD g ig jED Jgli 

From eq.(13), the following partial differential equations are obtained. 

aL 	t
i.wi [ 	I lnP.

J
+V 	- Y. + n. ] =0 - 	

g - ~ 	gli - a 	Jgli 	J 	Jg 

DL  
aY = 

t.
J 
-~ ti 2 wigPig l i = 0 

J 	iED g 

aL  
anig j eDPJ g I i - 1= o 

From (14) and (16), Pjg li is finally obtained as, 

»V. . -y.) 

PJgIi. JZDea(Vj,gl.-YJ,) 

write MU, Pjgli , yj where MU is at its maximum as MU* , P
Jgli , Y~ is 

expressed as, 

atU* - y.* 	
(18) 

In eq.(18) Yj is the first derivative of maximum total utility MU* about the 
observed trip attraction t.J•. Therefore yâ has the dimension of marginal 
utility, and the choice probability PPjgli is estimated according to the 
utility Vjgli and marginal utility yj which is dependent on observed trip 
attraction and independent of segments or origins. 

From equation (15), we can evaluate y* by introducing, 

aP
Jgli 
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(19) -17"jeD 
ej
a(V 	- j y) t. 

 

wig 

 fj(Y) = D i• S ig j 
ED 
ea(Vj,gli- Yj,) 	t .j 

and solving fj(y) = 0 (VjeD) iteratively with Newton-Raphson method. 

which maximizes the total utilify under the restriction of amount. 
After such evaluation of y" , we can obtain choice probability PJgli 

Finally the estimated trip distribution tij as 

_ 	* 	 (20) 
tij - 

ti. 	
wig Pjgli g 

satisfies the restriction of the volume of observed trip attraction. 

The zone size in which the restriction of the volume is introduced 
should be determined according to the reliability of data. When the trip 
distribution of larger zone partition is available, introduce the following 
instead of (12), 

2 2 ti.wig Pjgli _ tkk 	
(21) 

ieDk jeDQ 

and finally Pli is obtained as, 

P*
ea(Vjgli - 

u1(j)Ik) 	 (22) 
3gli 	j~D

ea(Vj'g i - Pt(J)lk) 

where Dk and Dk are the sub-sets of smaller zones of needed scale belong-
ing to larger zones k and 1. 

In the same way as discussed before, 111Ik can be estimated, and we can 
predict the trip distribution in needed scale of zone partition. 

For example, when the inter-municipality distribution of commuter trips 
is available from the national-wide census, this method can be employed 
effectively to predict OD table of finer zone partition with disaggregate 
data by another smaller survey. 

Further, it is clear that this methodology can easily be generalized to 
fit many other phenomena. 

3. Sampling of Destination Alternatives 

When using a large number of destination alternatives, it can be 
prohibitively expensive to prepare the Level-of-Service data and to estimate 
model parameters. 

For the solution to the problem as above, McFadden(1978) gave the method 
to estimate the parameters with smaller choice set sampled from given choice 
set, showing that the parameters have consistency with those estimated with 
full choice set. And Ben-Akiva (1984) summarized several ways of sampling. 

These studies are based on the IIA property of Logit model. Outline of 
these methodology is as following. 

Let A be the number of elements, of full choice set D, and SD be the 
sub-set of alternatives (SA elements), and P(SDIj) be the probability that 
choice set SD is formed when the alternative j has already been chosen. 
Assume the positive conditioning property as 

P(SDIj) > 0 , 	vj e D 

is satisfied, and assume that in the following conditional probability, 

(23) 
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P(SDIj)'P(j:D)  
P(jISD) _ 	P(SDIj')'P(j':D) 

j'ESD 

(24) 

P(j:D) has the Logit form as, 

eVj  
P(j:D) -

V 	
(25) 

j ED ej' 

then P(iISD) becomes 

eVj+1nP(SDIj) 
P(jISD) - 	Vj'+1nP(SDIj') 	 (26) 

j'ESD
e 
 

McFadden (1978) proposed the method to estimate parameters constructing 
likelihood function from (26). 

As a method to estimate P(SDIj), Ben-Akiva (1984) showed Simple Random 
Sampling and Inportance Sampling. The latter is to take much of important 
information avoiding the inefficiency of the former. And Independent 
Importance Sampling, which is a family of the latter, postulates that the 
probability R1 of sampling of alternative j is independent of the probability 
for other alternatives. So it expresses P(SDIj) as 

P(SDIj) = TT R., TT (1 - Rj,) 	 (27) 
j'ESD 3j'ESD 
(j'#j) 

And then equation (26) is rewritten as 

P(jISD) 	el/1   - 1nRjl 

j'ESD 

To determine Ri , Ben-Akiva (1984) proposed a method which introduces 
the preliminary estimates of the choice probabilities. And for this method, 
two factors of distance and size are usually used. 

In this paper, we propose another method of determining R1 . In this 
method, observed share is directly used. Let i be the subscript of origin, 
and Sjli be the observed share of destination j in the trips from origin i. 
Then, we describe Rjli as 

R.I. = a + (1  - a)bSjl i/Sm1. 	 (29) 31' 

where 	Sm l i  = max S. 
j 

(30)  

2 S 	- 1 (31)  

0 <a<1 (32)  

0 < b < 1 (33)  

a + b # 1 (34)  

where coefficient a represents a fixed value of the probability and coeffi-
cient b is concerned with an upper limit of the variable part which is 
composed of observed shares. 

The sub-set of each person SD, is determined by using Monte-Calro 
simulation with the probability Rili in eq.(29). And consistent estimators 

eVj - 1nRj 
(28) 
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of the model parameters are finally obtained by the maximization of the 
following conditional likelihood function. 

L = 2 	Sin  1nP(iISDn) 	 (35) 
n iESD n 

In this method, values of the both coefficients can vary a size of the sub-
set. However up to now it is not clear how much effect on the parameters 
arises from the reduction of the number of alternatives. 
We discuss this issue in Section 5. 

4. Estimation results of trip distribution 

An application of the methodology presented in Section 2 is carried out 
in order to examine its effectiveness. We use the person-trip-survey data 
which was obtained in Maebashi metropolitan area in 1977. In the following 
study, "to work trips" only in Maebashi city are applyed; the number of 
observation is 4723 and the area is drawn in Fig. 1. The area is divided 
into 11 B-zones and each B-zone is divided into several C-zone; the number of 
C-zone is 41. 

Alternatives of destination choice models are the latter zones and 
aggregation to produce 0-D tables is carried out with B-zones. 

Fig. 1 Devided Zones in Maebashi-Metropolitan Area 
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Now define the utility of destination j by, 

V. 	
= V. + E(max Umn l i.) 	 (36) 

m 

where the inclusive price which represents the accessibility concerned with 
all modes is contained. The inclusive price is expressed by 

1 
E(max Umn i ) = - In 	e Vmnlij 	 (3 7) 

m 	3 	meM 

and we can obtain this value from the following mode choice model, 

- eVmnlij  
Pmnlij 	aV 

méMe mnlij 

Now first we mention about the result of model estimates. Mode-choice 
model is presented in Table 1. The number of observations is 2,000, which 
is sampled randomly from total ones. 

Further, Table 2 shows destination choice model which contains the 
inclusive price obtained from Table 1. The choice set of this model is 
composed by the sampling method presented in Section 3; coefficient a is 
fixed at 0.25, coefficient b is 1.0, and Log-Likelihood function is presented 
at eq.(35). Every parameter is enough significant and Log-likelihood ratio 
is much higher. 

Secondly we aggregate these models using classification method with a 
segmentation by occupation; a job is at productive-industry or not. 

Table 4 is the OD matrix obtained after the model-aggregation and Table 
3 is the observed matrix. The correlation coefficient between these matrices 
is 0.926. 

Third we estimate OD table introducing yj in equation (13). Table 5 
is the estimation result of the marginal utility yi. (Yii is fixed at zero 
because of the property of Logit model) OD matrix from this process is 
presented in Table 6. In this case, the correlation coefficient is 0.960 and 
it is higher than the former. 

From the case study above, the effectiveness of introduction of Yj is 
shown. 

Table 1 	Estimation Results of Mode-Choice Model 

Independent 
Variable 

Estimated 	T- 
Coefficient Statistic 

Total travel time(min.) 	G -0.05419 8.20 
Access time to statcon(min.) 	R -0.1943 2.30 
Num. of cars/persons in household 	C 1.759 5.59 
Sex ; male 1 , female 0 	C 0.5059 3.72 
Car license ; owned 1 , otherwise 0 C 2.738 17.25 
Age ; 50-69 1 , others 0 	2W 0.3207 2.20 
Num. of 2Ws/persons in household 	2W 1.953 10.05 
Constant 	 R -2.168 4.74 
Constant 	 B -1.674 13.42 
Constant 	 C -3.187 16.47 
Constant 	 2W -1.996 12.13 

Chi-square (d.f.=11) 1790.0 
Log likelihood at market shares -2322.3 
Log likelihood at convergence -1427.3 
Likelihood ratio index 0.384 
Num. of observations 2000 

* 2Ws ; two wheelers 

(38) 
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Table 2 	Estimation Results of Destination-Choice Model 
(41 choice alternatives) 

No. 
Independent 
Variable 

Estimated 	T- 
Coefficient Statistic 

1 
2 
3 
4 
5 
6 
7 

Inclusive price 
Trip attractions 
(Num. of people engaged 

in manufacturing industry) 
*(manufacturing industry 
dummy) 

G 
G 

23-24 
28-30 
33-34 
35-36 
37-39 

1.398 
0.0003714 
0.0005575 
0.0003298 
0.0004800 
0.002097 
0.0003935 

30.94 
23.47 
4.61 

10.32 
5.57 
9.96 
9.17 

8 (Num. of people engaged 1-7 0.00008520 7.01 
9 in tertiary industry)* 31-32 0.0002341 5.60 

(tertiary industry dummy) 

Chi-square (d.f.=9) 6993.9 
Log likelihood at zero -8346.7 
Log likelihood at convergence -4849.7 
Likelihood ratio index 0.419 
Num. of observations 2000 

00  

Table 3 

2 	3 

OD volume from observed data 

4 	5 	6 	7 	8 9 10 11 tk. 
1 1038 160 220 196 57 313 70 124 27 196 14 2415 
2 1173 2083 653 256 146 718 310 222 31 259 28 5879 
3 1825 548 1950 347 259 780 233 846 143 594 55 7580 
4 1220 277 702 1128 99 615 105 308 142 729 118 5443 
5 1155 245 227 204 998 1435 86 13 28 58 69 4518 
6 1011 351 228 174 352 5421 176 195 62 117 33 8120 
7 1444 1122 507 428 406 881 1439 378 152 446 54 7257 
8 1182 372 971 547 167 839 236 2489 283 621 60 7767 
9 937 285 513 301 134 498 86 655 1426 869 46 5750 
10 1814 450 672 945 335 1000 317 451 503 3568 323 10378 
11 364 77 133 183 99 286 14 101 68 346 388 2059 

t.r 13163 5970 6776 4709 3052 12786 3072 5782 2865 7803 1188 67166 

1589 



00  

Table 4 	OD volume aggregated with classification method 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 11 tk. 
1 1100 191 366 189 46 '276 42 94 18 89 6 2415 
2 1783 1351 840 186 92 980 207 240 36 154 9 5879 
3 2268 685 1800 437 126 794 170 794 88 400 19 7580 
4 1701 284 792 778 176 663 100 300 64 558 27 5443 
5 1071 267 437 383 606 1130 91 175 38 282 38 4518 
6 1519 649 629 301 324 3877 209 276 64 253 19 8120 
7 1682 889 958 306 127 1255 1266 429 67 262 18 7257 
8 1758 583 1678 414 140 880 213 1299 209 565 27 7767 
9 1090 294 767 280 90 556 108 694 997 831 45 5750 
10 1901 465 1182 1024 274 1012 180 674 230 3290 146 10378 
11 475 90 193 176 117 287 37 85 41 319 239 2059 

t.1 16347 5749 9640 4474 2116 11711 2623 5059 1851 7004 592 67166 

Table 5 	Estimated marginal utilities yi 

Zone No. yQ  

1 -1.015 
2 -0.760 
3 -1.149 
4 -0.714 
5 -0.389 
6 -0.659 
7 -0.630 
8 -0.635 
9 -0.214 
10 -0.611 
11 0 

Table 6 OD volume obtained from the present method 
(with estimated yi) 

0D  1 2 3 4 5 6 7 8 9 10 11 tk. 
1 968 216 279 219 74 332 54 117 32 112 14 2415 
2 1502 1458 618 207 143 1133 253 289 66 189 21 5879 
3 1955 758 1347 494 199 941 213 973 160 495 45 7580 
4 1404 299 564 850 269 752 120 350 112 664 59 5443 
5 805 259 287 385 842 1193 101 191 63 314 78 4518 
6 1170 643 422 307 463 4140 239 305 106 285 40 8120 
7 1338 910 666 326 188 1397 1478 493 115 307 39 7257 
8 1437 610 1201 448 212 989 256 1520 365 670 60 7767 
9 813 281 494 272 124 559 118 726 1416 860 88 5750 
10 1445 455 782 1040 389 1071 202 735 370 3590 299 10378 
11 327 81 116 161 151 280 38 85 61 318 443 2059 

t.I 13163 5970 6776 4709 3052 12786 3072 5782 2865 7803 1188 67166 
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5. The size of a Choice Set 

In Section 3 we described the technique of reducing the choice set used 
in parameter estimation. But the estimators in this method are valid only 
asymptotically and we have little knowledge of the sub-choice set size 
which does not affect the accuracy of the parameters. In this section, we 
discuss this issue by using 500 observations sampled randomly from the 
complete data in Maebashi city and 40 destinations excluding only one by 
which no trip in the sample is attracted. 

We analyze the property of the estimators with the sampling technique 
described in eq.(29). 	Monte Carlo Simulation is carried out to 
obtain the sub sets of choice alternatives. In eq.(29) fixing b at 1.0 and 
varying a from 0 to 0.75 (4 cases of a = 0, 0.25, 0.5, 0.75), sample N•Rili 
observations for each destination and origin randomly from 500. With this 
simulation, we can obtain a subset of alternatives for every observation. 
Trying this process five times for each a, 20 data sets (4 cases and each 
5 data sets) are finally obtained and are utilized to estimate parameters. 
For the comparison we estimate the parameters with the subset sampled by 
using b fixed at 0.0, and we call this process Random sampling. Now we use 
the following index as a substitutive value of CPU time, 

alt. = 	SD n 	 (39) 
n 

and mean value and coefficient of variation of the estimated parameters as, 

1 Ok  = -2 Okt 	 (40) 

CVk 	Ok'J T 	(31(t -  (k)  2 

	
(41) 

and the relative error as, 

ERRk  = 15k - 010,1/010, 	 (42) 

In above equations, kt  is an estimated parameter, 0k is a parameter esti-
mated with the complete choice set, and T(=5) is the number of trials. 

Table 7 and 8 show the values of CVk and ERRk. 

Table 7 Coefficients of variation of each parameter 

(R : Random Sampling , w : Weighted Sampling) 
(alt.l : a=0 , alt.2 : a=0.25, alt.3 : a=0.5 
alt.4 : a=0.75) 

alt. 1 2 3 
parameter 

4 	5 	6 7 8 9 

1 
R 
W 

0.031 
0.015 

0.022 
0.043 

1.760 
0.521 

0.185 
0.026 

0.350 
0.118 

0.141 
0.064 

0.284 
0.061 

0.187 
0.075 

0.181 
0.063 

2 
R 0.016 0.026 2.448 0.065 0.174 0.060 0.096 0.096 0.056 
W 0.002 0.012 0.058 0.055 0.070 0.022 0.037 0.055 0.027 

3 R 0.010 0.015 0.780 0.077 0.048 0.035 0.091 0.067 0.038 
W 0.002 0.005 0.304 0.039 0.050 0.025 0.012 0.021 0.032 

4 
R 0.008 0.004 0.211 0.017 0.046 0.023 0.043 0.012 0.030 
W 0.002 0.002 0.188 0.009 0.033 0.011 0.015 0.024 0.021 
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random 

6 	8 	10 	12 	14 	16 

alt. 	x103  

C. V.m 

Table 8 Relative Errors of each parameter 

(R : Random Sampling , w : Weighted Sampling) 

alt. 1 2 3 
parameter 

4 	5 	6 7 8 9 

l  R 0.121 0.398 0.190 0.072 0.020 0.186 0.159 0.162 0.427 
W 0.106 0.201 0.626 0.074 0.139 0.050 0.085 0.028 0.104 

2 
R 
W 

0.046 
0.014 

0.165 
0.002 

0.450 
0.497 

0.017 
0.037 

0.244 
0.072 

0.011 
0.006 

0.034 
0.034 

0.109 
0.021 

0.119 
0.035 

3 
R 
W 

0.014 
0.001 

0.056 
0.003 

1.274 
0.165 

0.018 
0.023 

0.064 
0.010 

0.042 
0.006 

0.059 
0.010 

0.021 
0.017 

0.066 
0.004 

4 
R 
W 

0.014 
0.001 

0.021 
0.001 

0.118 
0.101 

0.002 
0.003 

0.003 
0.018 

0.003 
0.001 

0.034 
0.009 

0.023 
0.010 

0.036 
0.009 

While we should note that the value of alt. is slightly different between 
the cases of b = 1 (Weighted sampling) and b = 0 (Random sampling) for the 
same category in these tables, but we can say that the Random sampling gives 
generally worse estimation. Further, this tendency is clearer with samller 
value of alt.. In Fig. 2 and 3, CVm  and ERRm  are mean values of CVk and 
ERRk as, 

K 
CVm  = K 2 CVk  

K 
ERRm 	

k 
= 
K 

ERR, 

where K = 9 is the number of parameters. 

Fig. 2 Mean value of coefficients of variation 
and the number of choice-alternatives (alt.) 

(43)  

(44)  
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Fig. 3 Mean value of Relative Errors and the number 
of choice-alternatives (alt.) 
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4 
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Fig. 4 Mean value of Log-likelihood and the number 
of choice-alternatives (alt.) 
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About the Weighted sampling, CVm is less than 0.1 for each value of alt. 
while about the Random sampling, CVm is greater than 0.3 when alt is small. 
And also the Weighted sampling has smaller values of ERRm than those of 
Random Sampling for every value of alt. 

Further, we show, in Fig. 4, the expected value of Log-likelihood 
L(6)m as 

L6)m = T . L(et) 	 (45) 
t 

L(Ot) = 	2 S. 1nP.(0t) 	 (46) 
njED jn 	n 

V. 
jn(6t) - 	

eV~n 	
(47) 

e 3n 
j'ED 

	

Vjn = 2 Okt X. 	 (48) 
k 

In the figure, L(6)m and alt. seem to have some linear correlation, and 
also here, Weighted Sampling has a definite advantage especially when alt 
is small. 

From the above, we can say that the Weighted sampling (by observed 
share) gives better estimates than the Random Sampling, and also it is the 
result of Weighted sampling's better function of reducing the amount of 
information than the Random sampling's. The former reduces information 
according to observed share, and the latter reduces uniformly without the 
knowledge of share. 

Judging from the CVk and ERRk, parameter estimation has adequate stabi-
lity even when a = 0.25, i.e. we can reduce the number of alternatives to 
about 37% of the complete set. And similar analysis about the data set of 
2.000 trips shows that the Weighted sampling gives adequately stable esti-
mates even when a = 0.0. 

In summary, we have found a way to reduce considerably the time for 
parameter estimation. 

6. Sample Size needed to Predict OD Tables 

In this Section, we discuss how much observations are required to calib-
rate desaggregate destination choice models and to predict OD tables with 
the models. Although many studies about the sample size problem are re-
stricted to of the models with the small choice set, we discuss the case with 
large choice set of which the number is 41, investigating the stability of 
estimators and the prediction errors of trip distributions resulting from 
aggregation. 

First , sampling randomly from the total observations of 4,723, we 
generate 10 data sets for each size (from 250 to 2,000 observations). 

Second , we estimate the model parameters for each data set and 
aggregate the model to forecast OD table; the aggregation method proposed in 
Section 4 is utilized. 

Figure 5 shows the coefficients of variation of estimated parameters 
against each sample size. The numbers 1-9 in the figure correspond to 
parameters in Table 2. The generic variables of inclusive price (1) and 
trip attraction (2) have sufficiently small values of less than 0.1 when the 
sample size is greater than 750 for the former and 500 for the latter. As 
for alternative specific variables 3-9, the CV of a variable changes accord-
ing to which alternatives are specified, and the CV of the variables 4, 6, 7 
are relatively stable against the changes of sample size, while those of 
3, 5, 9 are greater than 0.1 even when sample size is equal to 2,000. 
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Fig. 5 Coefficient of variation of each parameter 
and calibration sample size 
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Further, we examine the difference between observed trip distribution and 
the estimated by aggregating the model. For aggregation, we took the method 
which we proposed in Section 4, so the restriction of trip attraction is 
satisfied by the introduction of Yj. We define error indices in 2 directions 
of column and row of OD table. In column (generation) direction, we define, 

1 mae = ND 	aei 	 (49) 
iED 

n 

aei =ISjli - Sjli1 	 (50) 
jED 

In row (attraction) direction, we define, 

mae = ND 
	

aej 	 (51) 
jED 

~ 	^ 

laej = 	t. 
lS l /t' -S

l / 	
ti,Sjli 	 (52) 

iED 1. 	
ji  

iED 

where ND (=11) is the number of B-zones. 
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Fig. 6 Mean value of the absolute errors of estimated 
OD tables (generation side) and calibration sample size 
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Figures 6 and 7 show the values of these indices against the sample 
size. In these figures, line-graphs show expected values of 10 trials, and 
the decimals 0.2129 in figure 6 and 0.2226 in figure 7 are the mae of the 
estimation with full sample. 

From these figures, we can say as following. The dispersion and the 
mean of mae get small as the sample size become larger. And above 1000 
observations, the dispersion changes little against the changes of sample 
size, and the values of mae are little different from those with full sample 
in this range of the size. 	Therefore , from the result of estimated 
trip distribution, we can conclude that practically the same result with full 
sample is obtained by more than 1,000 trips sampled. 
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Fig. 7 Mean value of the absolute errors of estimated 
OD tables (attraction side) and calibration sample size 
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Figure 8 shows the coefficients of variation of yj in equation (19). 
In the figure, the numbers affixed to lines correspond to zones, and yj of 
zone 11 is fixed at 0.0 as in Section 4. At the sample size of 1000 trips, 
yj except of zones 6, 7, 9 are stably estimated to have the values of CV of 
less than 0.1. At this sample size, CV of zone 6, 7 are less than 0.2, 
while that of zone 9 is no less than 0.4 with no improvement within sample 
size of 2,000 trips. One of the reasons of the unstability of zone 9 is that 
the zone has a very little attraction. 

Fig. 8 Coefficients of variation of yj and 
calibration sample size 

From the above examination, it has become clear that the necessary 
sample size for the caliblation of disaggregate destination choice model is 
1000 trips from the point of view of the prediction of OD tables. But we 
should notice that from the point of view of the stability of parameters, 
1000 trips is not sufficient for some parameters, while about the generic 
variables as the principal variables, 1000 trips is proved to give adequately 
stable estimates. 
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7. Conclusion 

This paper has considered the problems of predicting trip distributions 
with disaggregate destination choice models. A new methodology to forecast 
OD table is developed. And some important issues are discussed to improve 
the practicality of destination choice models. The results of this study 
are summarized as follows. 
(1) The aggregation scheme for producing OD tables with disaggregate models 

is developed in Section 2. It is now possible to introduce total con-
trol associated with trip volumes by modification of the utility func-
tions of disaggregate models. An example of this application to a local 
area in Japan is focused in order to evaluate some of the features of 
the methodology in Section 4. 

(2) In the case where the size of choice-set is very large, comparison of 
the sampling methods of choice alternatives which reduces the time for 
estimation of parameters are carried out in Section 3 and 5. The 
results indicate that to what degree the number of alternatives is 
reduced should be determined according to the sampling methods and the 
sample size. 

(3) The sample size enough to calibrate destination choice model and to 
predict OD tables is discussed in Section  6. We found that it is not 
necessary to use much data (more than 1.000 observations), when we 
evaluate the prediction errors of OD tables. However, it requires the 
larger samples to satisfy the statistical reliability of all parameters. 

REFERENCES 

1. Ben-Akiva, M. (1973), "Structure of Passenger Travel Demand Models", 
Ph.D. Dissertation, Department of Civil Engineering, MIT. 
2. McFadden, D. (1974), "Conditional Logit Analysis of Qualitative Choice 
Behavior, in Zarembka, P. (ed.), Frontiers in Econometrics, Academic Press, 
New York. 
3. McFadden, D. (1978), "Modelling the Choice of Residential Location, in 

Karlquvist", A. etal (ed.), Spatial Interaction Theory and Planning Models, 
North-Holland, Amsterdam. 
4. Ben-Akiva, M. & S. Lerman, (1979), "Disaggregate Travel and Mobility-
Choice Models and Measures of Accessibility", in Hensher, D. etal (ed.), 
Behavioural Travel Modelling, Croom Helm, London, pp. 279-318. 
5. Daganzo, C. (1979), "Multinomial Probit : "The Theory and Its Applica-
tion to Demand Forecasting", Academic Press. 
6. Williams, H.D.W.L. (1977), "On the Formation of Travel Demand Models 
and Economic Evaluation Measures of User Benefit", Environment and Planning, 
Vol. 9A, pp. 285-344. 
7. Ben-Akiva, M., Gunn, H. and L. Silman, (1984), "Disaggregate Trip dis-
tribution Models", Proceedings of JSCE, Vol. 347/IV-1, pp. 1-17. 
8. Morichi, S. and T. Yai, (1984), "Application of Disaggregate Travel 

Demand Model and Choice-based Sampling for Infrequent Trips", Proceedings of 
JSCE, Vol. 343, pp. 161-170. (in Japanese) 
9. Morichi, S. and T. Yai, (1985),"Disaggregate Modelling Techniques of 

Predicting Trip-Distribution", Infrastructure Planning Review, No. 2, 
pp. 45-52, Japan, January. (in Japanese) 
10. Morichi, S., Ishida, H. and T. Yai, (1984), "Comparison of Various 
Utility Functions for Behavioral Travel Demand Model", Proceedings of the 
World Conference on Transport Research, SNV, Hamburg. 
11. T. Yai, (1985), "Travel Demand Forecasting Techniques with Disaggregate 
Behavioral Models", D.Eng. Dissertation of Tokyo Institute of Technology, 
January. (in Japanese) 

1599 


