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1. INTRODUCTION  

Passenger and household surveys, traffic counts, revenue statistics, and population censuses 
provide useful data on characteristics of travelers. Each data source has its own advantages and 
disadvantages. Survey data and aggregate counts provide an example of two complementary data 
sources . Survey data offer detailed information on individual travelers characteristics, but usually 
have two major disadvantages: large sampling errors due to small sample sizes and nonsampling 
errors such as nonresponse bias. On the other hand, aggregate data from counts or other sources 
collected by counting or by other methods such as revenue statistics are much less costly to obtain 
and are usually free from sampling errors and nonsampling biases. Different types of surveys are 
also used to complement each other. For example, surveys of travelers crossing screen lines and 
cordons are often used to enrich household trip diary surveys. 

Data fusion is the process of combining two or more complementary data sources into a single 
comprehensive data base. A data fusion method should exploit the advantages of the data sources 
and compensate for their disadvantages by combining them into a single data base. 

The following context will elucidate the idea of combining various data sources. Data from a 
questionnaire survey are the principal source of information on individual characteristics. But survey 
data have the following two major drawbacks: 

i) High data collection costs and small budgets lead to small sample sizes and consequently large 
sampling errors; and 

ii) Nonsampling errors such as nonresponse may result in biased statistics. 
These drawbacks are generally not present in data obtained by passive data collection methods such 
as counts of passengers. These methods do not require an active participation of individual travelers 
and therefore only convey information on groups of individuals. Hence, this kind of data is called 
"aggregate data." For example, counts of passengers boarding and alighting public transport vehicles 
give the numbers of passengers having a common origin or destination. The passengers are 
"grouped" with respect to origins or destinations. Therefore, these counts do not provide direct 
information on origin to destination flows and their estimation must rely on additional data sources 
such as an on-board survey which asks a respondent for the origin and the destination of the trip. 

This paper will describe in detail an application of data fusion methods to estimate origin-
destination (O-D) tables of intercity rail passengers by market segment. Ticket sales data provide 
monthly O-D volumes aggregated over all market segments. Estimation must, therefore, rely on on-
board passenger surveys to obtain information about attributes of travelers. Such surveys are subject 
to significant errors. The data fusion method combines the two types of data to yield more accurate 
and unbiased estimates. 
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In this paper we present a class of methods for combining and updating data bases which 
correct measurement biases inherent in certain data sources and reduce sampling errors. The 
following section of this paper develops a general framework for combing multiple data sources and 
formalizes the problem as a statistical estimation process. The theoretical framework serves to lay out 
the range of alternative estimators. The subsequent section describes the estimation process in 
creating O-D tables from multiple data sources as an application of the methodology. A case study is 
presented in Section 4. Finally, the concluding section offers some suggestions for related areas into 
which the approach may extend and directions for further research. 

2. GENERAL FRAMEWORK 

(1) Primary unknown parameters: 

Data and models are used to make inferences about characteristics of a population. In survey 
expansion, descriptive data analysis and forecasting, the population characteristics of interest appear 
as percentages of certain subgroups of a population (e.g., the percent of commuters residing in a 
specific zone and using public transport) or sizes of population strata (e.g., the number of trips from 
an origin to a destination and the number of car-owning households per specific zone). We can 
estimate these unknown characteristics directly, or construct and estimate an underlying parametric 
model predicting these characteristics in terms of explanatory variables and a few unknown 
parameters. In the former case, the unknown parameters are the characteristics of the population 
themselves. In estimating an O-D table with ten traffic zones, for example, a non-modeling approach 
must estimate 10 x 10 = 100 parameters (or cell entries), while a modeling approach based, for 
instance, on a gravity model would estimate only a small number, say 5 - 12, of model parameters. 
A modeling approach is usually adopted when the analysis aims to develop a model to infer the 
underlying behavior and apply it for forecasting. If the number of unknown parameters is 
prohibitively large, the use of a model in a descriptive data analysis could also be beneficial. 

In this paper we focus on descriptive analyses. Hence, the primary unknown parameters are 
the sizes (or percentages) of population strata (subgroups), which are denoted by Tk, where 
k=1,...,K represents the stratum. [In a modeling approach we would express the primary parameters 
as functions using an underlying model, i.e., T k=f((l), k=1 ..... K, where [i is a vector of "deep" 
model parameters whose length is significantly less than K.] 

(2) Direct measurements: 

Direct measurements of the primary unknown parameters can be obtained by survey methods. 
For instance, the percentage of commuters residing in a given area who use a specific travel mode can 
be obtained by a population-based questionnaire survey. Denote by tsk  the direct measurement of the 
size of the population in stratum k available from data source s. Denote by S the number of 
independent data sources providing direct measurements of individual strata populations. [A 
parametric model can be considered to be an independent data source and the values of the dependent 
variable obtained from a model could be viewed as direct measurements (e.g., fitted O-D flows by a 
gravity model).] 

(3) Indirect measurements: 

Indirect measurements are observations of population characteristics that depend on two or 
more of the primary unknown parameters. Typically, these measurements represent aggregations of 
population strata. For instance, if the primary parameters are cell entries of an O-D table, then traffic 
generation and attraction (i.e., row sums and column sums, respectively) are indirect measurements. 
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Indirect measurements are usually obtained from sources such as traffic counts and official census 
data. Denote by r the value of indirect measurement g=1,...,G, where G is the number of available 
independent data items providing useful information on the values of functions of two or more 
unknown parameters. In the vast majority of applications rg  is a linear function of the primary 
parameters as follows: 

K 
r g = 	R gkTk + vg  , g=1 ,...,G , 

k=1 

where Rgk, g=1,...,G and k=1,...,K, are known coefficients and v g, g=1,...,G, are random 
disturbances reflecting potential random fluctuations and measurement errors. If, for example, Tk  is 
the number of trips from an origin to a destination and rg  is a traffic count at a given location, then the 
coefficient Rgk  is the share of the volume Tk  crossing counting station g. 

(4) Measurement bias: 

Some measurement techniques — surveys in particular — are often subject to biases originating 
from a variety of systematic non-sampling errors which depend among other things on survey 
administration procedures. The following presentation assumes, for simplicity, that the indirect 
measurements are unbiased, i.e., E(v)=0. 

Let gsk  be a multiplicative systematic bias factor for the s direct measurement of the population 
of stratum k. Thus, the expected value of direct measurement s of stratum k's population is 
expressed by: 

s T 
E(tsk) = Fsk k  , k=1,...,K, s=1 ..... S , 

(2)  

where Fsk  is the design expansion factor of measurement s for stratum k. With prespecified sampling 
rates, Fsk  is equal to the inverse of the sampling rate of survey s in stratum k. The design expansion 
factors (the Fs) are assumed to be known. [If for some reason they are unknown, then they would 
be omitted and the corresponding bias parameters would represent the inverse of "bias corrected" 
expansion factors.] Without loss of generality, the value of the direct measurements can be expressed 
as follows: 

s=1 	, 
(3)  

where usk is the random error in the measurement of tsk. Since µsk  is unknown, the introduction of a 
multiplicative bias results in a non-linearity in the unknown parameters. It appears in the above 
equation in the form of the product itskT . 

(5) Estimation method: 

The problem of combining different data sources may now be stated as the task of jointly 
estimating the unknown parameters of equations (1) and (3). The unknown parameters are the K 
primary parameters denoted by the vector T and the SK bias parameters denoted by g. The 
observable variables are SK observations of is and G observations of r's, the F's and the R's are 

(1) 
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known constants and the u's and the v's are random errors. Thus, the number of unknown 
parameters is K+SK and the number of independent measurements is SK+G. The necessary 
condition for all the unknown parameters to be identifiable is G?K. This condition is infeasible in 
most applications. Consider, for instance, the problem of estimating an O-D table with K cells. This 
condition implies that at least K independent traffic counts are needed in addition to K direct 
measurements of the K cells. 

Thus, this estimation problem is impractical unless the number of bias parameters is reduced 
from SK to a much smaller number. This requires a priori specifications of parametric bias models 
which express the values of the SK µ's as functions of strata attributes and a smaller number of 
structural or "deep" bias parameters that need to be estimated from the data. 

The joint estimation of a system of equations such as (1) and (3) is known in the econometrics 
literature as a mixed estimation problem (Judge et al (jJ). If these equations were linear in the 
unknown parameters, they could be estimated by ordinary (or generalized) least squares methods. 
The introduction of unknown multiplicative bias parameters brings about non-linearities requiring the 
use of non-linear estimators that significantly increase the computational burden. A Maximum 
Likelihood Estimator (MLE) can be employed if the parametric form of the distribution of the is and 
the is can be specified. MLE provides full flexibility in model specification and has desirable 
statistical properties under very general conditions. 

The generalized form of the estimation problem can be expressed as follows: 

minimize h(u,v:T,p.) = ht(u:T,µ) + h2(v:T) , 
(T40 

where T is a K x 1 vector of the primary unknown parameters and µ is the vector of the bias 
parameter. h(u,v:T,µ) is an expression of total error or "badness" of fit to be minimized. It is 
reasonable to assume that the direct and indirect measurements are independently distributed and the 
objective function is therefore additively separable into the two error functions ht(u:T,g) and h2(v:T). 

A special case of practical significance is the situation with deterministic (i.e., error free) 
indirect measurements. For vr:1 the estimation problem becomes: 

minimize h t (u:T,R) 
(T. µ) 

subject to r = RT , 	 (5) 

where r is a G x 1 vector of indirect measurements and R is a G x K matrix of known coefficients. If 
GzK, the values of the Ts can be obtained from the constraints by solving K linear equations. 
Thus, the estimation problem in (5) is relevant for situations in which K>G. 

The computational advantage of this deterministic indirect measurement can be seen in the 
Iterative Proportional Fitting (IPF) method, which is also known as biproportional fitting (2), 
Furness or Fratar procedure U, the Kruithof s algorithm (4), and Bregman's balancing method (5). 
The IPF estimators are proportional to the initial matrix entries with a constant of proportionality for 
every row and every column. These multiplicative factors modify the initial entries to be consistent 
with the observed row and column sums. Deterministic indirect measurements are also employed in 
Constrained Generalized Least Squares (Hendrickson and McNeil, (6)) and Constrained Maximum 

(4) 
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Likelihood Estimation (Ben-Akiva, Macke and Hsu, L)). Alternative estimators for stochastic and 
deterministic indirect measurements are presented in Ben-Akiva (a) and McNeil and Hendrickson U. 

3.O-D TABLE ESTIMATION WITH SURVEY ERROR CORRECTION  

This section applies the general framework to a special case. The primary unknown parameters 
are O-D volumes of passengers and the data sources are questionnaire surveys and counts. A unique 
aspect of this application is the stratification of the O-D table by market segments. The segmentation 
is observable in a survey but not in the count data. Note also that there are multiple counts over time 
which are treated as random variables. 

Trip tables stratified by market segment are often necessary because different market segments 
respond differently to changes in the attributes of transportation services. For public transportation 
services on-board and platform passenger surveys can provide direct estimates of market segment t rip 
tables. However, these direct measurements for specific O-D flows have large sampling errors and 
are often biased mainly due to nonresponse problems. Passenger counts and ticket sales data may 
provide estimates of aggregate O-D flows which are free from nonresponse bias. The combination of 
passenger survey data with passenger counts and ticket sales data can therefore be used to yield 
unbiased and more precise estimates of trip tables stratified by market segment. 

In this application, the primary unknown parameters are the number of passengers belonging to 
a certain market segment and traveling between a certain O-D pair during a specific time period. This 
problem can also be defined as the estimation of the entries of a three-dimensional array in which the 
first axis represents trips origin, the second spans the trip destination, and the third dimension is the 
market segment. The passenger survey data provide a direct measurement for each entry and counts 
or ticket sales data give indirect measurements of the entries aggregated through the third axis. We 
assume, then, that counts or ticket sales data are routinely collected over time and therefore are 
available for survey periods as well as for other times. The direct measurements are assumed to be 
biased. This data combination problem also include; the estimation of the unknown parameters of an 
explicit response bias (or response rate) specification. 

(1) Notation: 

T ;jk= mean value of daily trips from origin i to destination j made by members of market segment k. 
These are the primary unknown parameters to be estimated. 

pijks= response rate to survey s by individuals in market segment k traveling from i to j. These are 
also unknown parameters. 

t1jks= observed number of trips from i to j by market segment k in survey s. These are the direct 
measurements. 

rum= number of tickets sold for or a count of trips from i to j during month m. These are indirect 
measurements. 

(2) Distributional assumptions: 

i) Individuals in a market segment make trips according to an identical and independent Poisson 
process. Namely, a random variable N iik , which represents the number of trips by market 
segment k from i to j during a randomly selected day, is the outcome of a Poisson process with 
parameter Tijk, as follows: 

Niik  ^• Poisson(Tijk) 	 (6) 
or 
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TrykN`'' eXP(-Tijk)  Pr( Nijk) =  Nijki  (7) 

ii) Individual response to a survey is the outcome of a Bernoulli trial. Also individuals in a market 
segment have the same response rate, pub, to survey s. Under this assumption, the direct 
measurement, tijks, given Nijk, is a binomial random variable with parameters Nijk and p;j,tr, as 
follows: 

tub -- Binomial(Nijk, p;jb) 	 (8) 

Pr(t;jk: I Nijk) = ( ifk 
ks 

)(Pijks)1„L(1-Pijks) 'R -tii+. 
j 

The compound distribution of t;•,~ given Tijk is found by deriving the marginal distribution of 
tub. From equations (7) and (y) it can be shown that tub has a Poisson distribution with 
parameter p;j,t,.Tijk, that is: 

tub - Poisson(pjksT;jk) 

iii) The number of trips made in a day is statistically independent of any other day and is statistically 
independent among market segments. This assumption implies that the indirect measurements, 
rum, are also Poisson random variables because the sum of independent Poisson variables is 
Poisson distributed. Since rijm is aggregated through market segments and days of the month, it 
is given by: 

r;jm ^' PoiSSOn(dm1, Tijk) 
k 	 (11) 

where dm denotes the number of days in month m. 

iv) The survey data and the monthly count data are statistically independent. This assumption is valid 
if there are very few survey days during any given month. The overall likelihood function is then 
a product of the likelihood of the survey data and that of ticket sales data. 

(3) Response rate model: 

In the above equations the response rates, p;jb, are also unknown parameters. The number of 
these parameters can be reduced by expressing them as functions of the passenger's socioeconomic 
characteristics and the survey administration method. For a self-administered on-board survey the 
travel time may affect the survey response rate. Assuming that a market segment is homogeneous 
with respect to survey response rates, the following specification of response rate as a function of 
travel time may be used: 

Pijks = 	1 l+exp(aks - bbdu) 	 (12) 
where 

d j = travel time from i to j; and 
a,t,, btr = unknown response rate parameters. 

or 

(9)  

(10)  
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Equation (12) employs a logistic form to bound the response rate between 0 and 1. 

(4) Likelihood function: 

The likelihood function of the direct measurements is: 

Lt = n II II II 	aks, bks) , 
f i k S 

and that of the indirect measurements is: 

(13) 

L2 II fl  II h2( rum: h r;jm: T;jk) . 
i 1 m 	 (14) 

The forms of ht and h2  are based on the Poisson distributions in equations (10) and (11), 
respectively. 

Under distributional assumption (iv), the overall likelihood function to be maximized is given 
by: 

L=Lt xL2 . 	 (15) 

4. AN EMPIRICAL CASE STUDY  

This section presents an application of the O-D table estimation method developed in the 
previous section to the estimation of intercity rail passenger trip tables for the Los Angeles-San Diego 
(LOS SAN) corridor. 

4 1 Data. Market_Seementation. Likelihood Function and Estimation Technique 

(1) Data: 

Orange County Transportation Commission (OCTC) conducted on-board surveys on the 
following days in July, 1984: 10 (Tue), 11 (Wed), 13 (Fri), and 15 (Sun). The survey 
administration method and exploratory data analyses are documented in OCTC (1)). Amtrak also 
carried out an on-board survey in December of the same year. Although the questionnaire used in the 
survey is available, the administration method and the exact date have not been documented. 

In the OCTC surveys, four out of eight trains were chosen in each direction on each day to 
administer the survey. Since the combinations of those four trains differ from day to day and O-D 
flows dramatically fluctuate according to the combination of trains, survey data on any particular day 
do not necessarily mirror the daily ridership. Therefore, the OCTC three weekday surveys are 
combined into a single data set. 

Accordingly, we consider the following three surveys: 
survey 1 - OCTC weekday surveys; 
survey 2 - OCTC Sunday survey; and 
survey 3 - Amtrak survey. 

In addition to the on-board survey data, indirect measurements were provided by monthly ticket 
sales data from October, 1981 through September, 1985. 
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(2) Market segmentation: 

The specification of the market segmentation scheme should depend on both substantive and 
statistical considerations. It is clearly desirable to define market segment that are homogeneous with 
respect to demand elasticities with respect to service attributes. The statistical considerations include a 
requirement of a minimal number of observations per cell and a priori expectation with respect to 
response rate and travel pattern. Namely, all members of a market segment must have approximately 
the same response rate and mean value of trips by O-D pair. 

The market segmentation scheme employed in this case study relies on trip purpose and the size 
of the traveling party as follows: 

Market Segment 1 - Commuting trips; 
Market Segment 2 - Other business related trips; 
Market Segment 3 - Personal trips, traveling alone; and 
Market Segment 4 - Personal trips with a traveling party size of two or more. 
(Note: school trips are included as personal trips.) 

Since the Amtrak survey did not ask for the party size, it only provides an aggregate 
measurement of market segments 3 and 4. In other words, it provides indirect measurements with 
respect to market segments 3 and 4. 

(3) Likelihood function: 

In addition to the principal and the bias parameters, the model includes weekend and seasonality 
adjustment factors. The weekend factors are the ratio of a weekday to a weekend day value and are 
specific to market segment. Ridership also drastically fluctuates by season and its fluctuation pattern 
depends on the O-D pair. Hence, all the O-D pairs are categorized into the following three groups 
and monthly seasonality factors are specific to each group: 

O-D group 1 - O-D pairs with either origin or destination at Anaheim (the location of Disneyland); 
O-D group 2 - O-D pairs with either origin or destination at San Clemente (a popular summer 

resort); and 
O-D group 3 - all the other O-D pairs. 

Reflecting the specification of the response rate and the weekend and seasonality factors, the 
model described below is obtained: 

tt'ks ^ Poisso 
~ 

l 
(16) 

ci'm,wksTi'k 1+exp(a,~ - bk,dÿ) 	t 	1 ] 

and 
riit ^ PO1SSOnrCijmi 

LL 1
~Em,~ T iJk + Fm+ L~ wkT iik~J + 
 k 	 k 	 (17) 

where tÿ t, = the number of respondents in survey s belonging to market segment k and traveling 
from i to j (direct measurement); 

rift = the number of trips from i to j during the l-th month, 1=1,...,48 (i.e., 4 years) (indirect 
measurement); 

Tiik = the mean value of the number of weekday trips from i to j by market segment k 
(primary unknown parameter); 

b = unknown response rate parameters for market segment k and survey s; 
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d1  = travel time from i to], approximated by the number of stations between i to j; 
wk  = weekend factor for market segment k, i.e., weekend/weekday ratio; 
wkS  = wk, if survey s is conducted in weekend; 0, otherwise; 
c;  •m  = seasonality factor for O-D pairs (i, j) and month m; 
Elm  = the number of weekdays in month m; and 
Fm = the number of weekend days in month m. 
(Note: m3  and mi denote the month of survey s and the 1-th count data, respectively.) 

The log-likelihood function to be maximized is given by: 

L = II II II II (tijks) x  IZ II II Pr(ri0 . 
S i j k 	 j 

	
(18) 

A quasi-Newton numerical method called "Davidon-Fletcher-Powell (DFP)" (Fletcher and 
Powell (11)) procedure was employed to solve this optimization problem due to the large number of 
unknown parameters since this procedure does not require the inverse operations of the Hessian 
matrix. It was implemented on a personal computer using the GAUSS programming language 
(Aptech Systems (12)). The program required approximately 500 iterations to reach convergence. 

4.2 Estimation Results 

In discussing the estimation results, it is useful to summarize first the unknown parameters. 
The 341 unknown parameters are composed of: 

288 Tijk s : since LOSSAN corridor has 9 stations, one O-D table has 72 cells (9 x 8) and there 
are 4 market segments (4 x 72 = 288); 

8 aks  s : 	4 market segments times 2 surveys (OCTC and Amtrak); 
8 bks's : 	ditto; 
4 wk's : 	4 market segments; and 
33 cijm s : 3 O-D groups times 11 months because the parameters' values for December are 

normalized to one. 

The estimation results of the principal parameters, Tijk's, and the other parameters are shown in 
Tables 1 through 6. Most of the parameters have large t-statistics. 

Figures 1 and 2 compare the response rates. They show that all the response rates except for 
market segment 1 in the OCTC survey increases with distance traveled. This means that passengers 
traveling longer are more likely to respond to an on-board survey, which is intuitively reasonable. 
Market segment 1 in the OCTC survey has a negative slope, which can be explained by the following: 
in the OCTC survey data, most trips are short distance (e.g., Los Angeles - Fulerton), while the 
Amtrak survey indicates that there are more long-distance commuting trips, such as Los Angeles - 
San Diego, than short distance ones. This discrepancy seems to have resulted from the choice of 
surveyed trains and passengers' subjective definitions of the term "commuting" that they have used in 
answering the survey question on trip purpose. Thus, the response rate parameter for the OCTC 
survey may have captured the effect of selectivity of the trips resulted from the above two reasons. 

Because the Amtrak survey provides only the aggregate number of passengers with regard to 
market segments 3 and 4, Figure 2 shows that there were no responses from market segment 4 in the 
Amtrak survey due to an estimation problem. 
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Table 1 Primary Parameters for Market Segment 1 - Commuting Trips; persons/day 
(t-statistics in parentheses) 

LAX FUL ANA SNA SNC SNT OSD DEL SAN 
LAX 20.1 0.7 13.6 16.7 0.0 11.8 15.7 29.4 

(15) (2.7) (14) (13) (2.6) (6.9) (6.7) (6.7) 
FUL 20.9 0.0 0.0 3.0 0.1 2.1 4.5 1.3 

(15) (0.3) (0.6) (5.5) (1.3) (3.8) (5.0) (2.3) 
ANA 0.3 0.0 0.0 0.6 0.1 0.6 1.9 0.8 

(1.6) (0.3) (0.2) (2.7) (1.6) (2.6) (4.5) (2.0) 
SNA 10.9 0.0 0.0 0.5 0.0 1.4 0.8 0.9 

(10) (1.2) (0.6) (2.1) (0.2) (7.3) (2.6) (2.2) 
SNC 20.5 8.5 0.7 2.2 0.0 0.6 1.4 0.0 

(13) (9.3) (3.1) (7.5) (1.4) (2.7) (12)  (0.1) 
SNT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

(1.6) (0.7) (1.3) (0.6) (0.4) (0.6) (0.2) (0.5) 
OSD 14.1 4.4 2.9 8.0 1.1 0.0 0.0 0.0 

(7.6) (7.4) (6.0) (11) (4.7) (1.4) (2.0) (2.2) 
DEL 31.5 5.2 5.2 3.8 2.5 0.0 0.0 0.0 

(10)  (5.2) (7.4) (7.1) (5.8) (1.7) (0.3) (2.8) 
SAN 70.0 2.9 2.8 1.6 0.4 0.0 0.0 0.7 

(11)  (2.2) (3.7) (3.1) (1.6) (0.3) (1.9) (5.3) 

Table 2 Primary Parameters for Market Segment 2 -.Other Business related Trips; persons/day 
(t-statistics in parentheses) 

LAX FUL ANA SNA SNC SNT OSD DEL SAN 
LAX 21.4 3.8 9.9 7.8 0.1 7.9 13.2 22.2 

(13)  (3.8) (5.0) (5.4) (1.7) (6.6) (9.7) (15) 
FUL 26.7 0.0 0.0 1.2 0.0 1.2 1.7 3.6 

(11)  (0.2) (1.3) (2.1) (0.6) (2.9) (4.2) (4.7) 
ANA 5.5 0.1 0.0 0.0 0.0 0.9 1.9 2.1 

(3.7) (1.8) (0.8) (0.2) (0.3) (2.9) (3.2) (4.0) 
SNA 9.6 0.0 0.0 2.0 0.0 2.2 1.1 2.7 

(5.0) (2.2) (0.6) (3.4) (0.5) (3.9) (2.5) (3.2) 
SNC 14.3 2.4 6.2 0.0 0.0 0.7 0.6 1.9 

(6.9) (3.3) (15) (0.4) (9.1) (1.7) (2.1) (2.5) 
SNT 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

(1.7) (0.6) (2.0) (0.5) (5.8) (0.7) (1.8) (0.5) 
OSD 13.8 3.5 0.2 6.9 0.0 0.0 0.0 0.0 

(8.1) (5.4) (1.0) (4.7) (0.2) (1.6) (0.9) (1.8) 
DEL 24.7 4.8 2.6 6.4 1.9 0.2 0.9 0.0 

(12)  (5.7) (5.5) (5.3) (2.3) (2.9) (3.0) (1.9) 
SAN 28.0 2.9 3.0 6.3 1.8 0.1 0.0 0.0 

(13)  (4.7) (4.7) (7.1) (2.8) (2.1) (2.0) (2.2) 
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Table 3 Primary Parameters for Market Segment 3 -.Personal Trips: Party Size 1; persons/day 
(t-statistics in parentheses) 

LAX FUL ANA SNA SNC SNT OSD DEL SAN 
LAX 82.9 14.3 52.3 51.4 2.9 61.7 68.5 131.0 

(42) (20) (41) (34) (23) (38) (37) (31) 
FUL 62.8 0.2 0.0 21.2 2.4 20.7 19.7 38.9 

(24) (16) (2.6) (27) (24) (36) (31) (23) 
ANA 10.1 0.2 0.2 4.2 0.3 8.6 8.1 14.8 

(11) (7.0) (14) (19) (5.2) (27) (16) (12) 
SNA 50.9 1.8 0.2 7.2 2.1 23.5 23.6 48.1 

(34) (41) (16) (13) (35) (42) (40) (38) 
SNC 44.5 20.7 0.0 12.2 0.0 5.2 12.5 21.0 

(36) (24)  (0.8) (31) (1.8) (19) (42) (31) 
SNT 2.5 2.4 0.2 0.7 0.0 0.2 0.3 0.5 

(38) (26) (4.9) (7.5) (1.4) (25) (8.3) (9.6) 
OSD 64.5 20.9 7.9 32.4 7.9 0.4 3.6 24.3 

(33) (34) (15) (30) (24) (29) (48) (57) 
DEL 53.5 23.3 4.2 28.0 11.9 0.6 2.4 21.9 

(24) (25)  (8.8) (34) (24) (14) (10) (56) 
SAN 124.7 59.9 20.7 58.4 19.6 1.2 21.6 21.7 

(23) (33) (29) (43) (33) (20) (54) (55) 

Table 4 Primary Parameters for Market Segment 4 -.Personal Trips: Party Size 2+; persons/day 
t-statistics in parentheses 

LAX FUL ANA 	SNA SNC SNT OSD DEL SAN 
LAX 4.0 4.3---373-  4.8 0.5 9.0 13.1 62.9 

(5.3) (7.6) (3.9) (4.7) (4.7) (7.1) (9.5) (17) 
FUL 15.2 0.0 1.5 5.0 0.6 4.4 6.3 40.0 

(7.1) (1.4) (39) (6.1) (7.3) (6.8) (6.7) (20) 
ANA 7.6 0.0 0.0 0.8 0.1 0.6 0.5 14.7 

(8.5) (1.3) (0.4) (4.4) (1.3) (2.1) (1.8) (13) 
SNA 10.1 0.0 0.0 5.0 0.2 0.3 2.4 17.8 

(7.2) (0.8) (0.2) (8.5) (9.0) (1.3) (4.5) (15) 
SNC 5.5 1.2 1.2 0.6 0.0 0.8 0.6 5.1 

(5.9) (3.1) (4.5) (2.8) (0.4) (2.9) (3.0) (8.3) 
SNT 0.0 0.1 0.0 0.5 0.0 0.0 0.1 0.2 

(1.7) (2.1) (0.3) (5.1) (0.7) (0.6) (2.4) (4.2) 
OSD 11.8 2.0 1.3 2.2 1.8 0.0 0.0 0.0 

(8.2) (3.5) (3.1) (3.7) (5.1) (2.9) (1.4) (2.5) 
DEL 19.1 2.2 3.3 0.8 1.7 0.0 0.0 0.0 

(11) (3.2) (6.9) (1.9) (5.5) (1.8) (0.6) (3.8) 
SAN 45.4 14.0 7.1 7.9 6.6 0.1 0.3 0.0 

(13) (8.8) (9.5) (8.5) (11) (2.3) (3.6) (2.6) 
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Table 5 Response Rate Parameters 
(t-statistics in parentheses) 

Response rate parameters - exp(akr) 

Market segment OCTC survey Amtrak survey 
1 0.00 (1.0) 1.59 (2.8) 
2 7.71 (5.5) 7.60 (2.8) 
3 34.6 (11.1) 23.2 (4.9) 
4 0.94 (3.8) oo (0.6) 

Response rate parameters - exp(bkr) 

Market segment OCTC survey Amtrak survey 
1 0.22 (6.4) 2.14 (5.3) 
2 1.86 (13.0) 2.71 (5.9) 
3 1.39 (55.9) 1.90 (20.3) 
4 1.09 (20.8) 0.00 (0.6) 

Table 6 Weekend and Seasonal Adjustment Factors 
(t-statistics in parentheses) 

Weekend Factors - wk 

Market segment 
1 0.10 (9.5) 
2 0.23 (10.1) 
3 1.79 (25.5) 
4 1.76 (24.5) 

Monthly seasonal adjustment factors - cum  

O-D group 1 O-D group 2 O-D group 2 
Jan 0.91 (78) 0.94 (38) 0.99 (426) 
Feb 0.98 (80) 1.13 (40) 0.95 (423) 
Mar 1.48 (87) 1.34 (41) 1.15 (443) 
Apr 1.55 (88)  1.89 (44) 1.22 (447) 
May 1.63 (89)  4.11 (49)  1.33 (456) 
Jun 1.99 (93) 7.58 (51)  1.29 (454) 
Jul 1.96 (93)  7.04 (51) 1.35 (459) 
Aug 2.31 (94)  6.58 (50)  1.53 (468) 
Sep 1.51 (87) 2.52 (46) 1.05 (433) 
Oct 0.64 (72) 1.52 (43) 0.91 (413) 
Nov 0.90 (77) 0.95 (38) 1.03 (432) 
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Figure 1 Response Patterns in OCTC Surveys 
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Figure 2 Response Patterns in Amtrak Survey 
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The estimates of the weekend factors look reasonable. They show that on a weekend day the 
numbers of commuters and business passengers are 10% to 23% of a weekday, respectively. Also, 
on a weekend day there are about 1.8 times more personal trips than on a weekday. 

Monthly seasonal factors show considerable variation among O-D groups. The factor of O-D 
group 2 (either origin or destination is San Clemente, a summer resort) is 7.6 in June, which means 
that in June 7.6 times as many travelers as in December travel to or from San Clemente. Note, 
however, that the journeys to and from San Clemente station are a trivial fraction of the total ridership 
(in fact, only one out of eight trains stops at that station). O-D group 1 (either origin or destination is 
Anaheim, the Disneyland station ) also shows greater factors in summer months than O-D group 3 
(all the other O-D pairs). 

5. CONCLUSIONS  

The method described in this paper can be used in a variety of applications. The application 
presented focused on the correction of the nonresponse bias and reduction of sampling errors by 
combining survey data and aggregate count data. Although improving the survey administration or 
repeating the survey may reduce survey errors and biases, it may not be efficient in terms of cost and 
time. Utilizing other sources of information provided by existing data or inexpensive counts seems 
feasible and practical. The proposed method statistically combines survey data with aggregate data 
and obtains unbiased and efficient parameters estimates. 

The idea of statistically combining data from different sources can be applied to various other 
contexts. In this paper we focused on the use of data to obtain descriptive statistics of an existing 
situations. Another area where the same ideas seem to have a significant potential is in the estimation 
of travel demand models. Parameters of disaggregate and aggregate travel demand models can be 
estimated by using both survey and external counts or census data (e.g., Gonzalez (13), Morichi and 
Yai (14)). A model transferred from one region to another is often subject to a transfer bias that can 
be corrected by combining data from both regions (Ben-Akiva and Bolduc (15)). Combining 
revealed and stated preference data in the estimation of travel demand model is another promising area 
of research and can fit within the general framework presented in this paper (Morikawa (16_)). 
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