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1. 	INTRODUCTION 

In the last decade, the multinomial logit (MNL) model has undergone an immense 
amount of theoretical and empirical developments (1, 3). Nowadays MNL models 
are being estimated and applied as a major mode choice component in numerous 
urban transportation planning studies (3, 4, 5, 6). Despite its wide acceptance, 
the MNL model has a limitation in accounting for differential substitutability 
among alternatives, particularly as embodied in its independence of irrelevant 
alternatives (IIA) property. 	This has led to an interest in developing 
alternative model structures that do not possess the IIA property. 

Multinomial probit (MNP, 7) and cross-correlated logit (CCL, 8) are the two most 
flexible model structures that fully relax the IIA property of the MNL model. 
Using these structures, the alternatives in the choice set can be assumed with 
any degree of correlation. However, both of these models are mathematically 
intractable. Numerical integration, which is often time consuming, is usually 
required when the choice probability is to be computed. Daganzo applied Clark's 
approximation to save computational effort for MNP models; however, when the 
number of alternatives in the choice set exceeds 4 or 5, the choice probabilities 
produced by the approximate method are inaccurate. With the present speed of 
computers, MNP and CCL models are still limited to academic research contexts. 

Other model structures simpler than MNP and CCL are available. Universal logit 
(UL) nested logit (NL), and ordered logit (OL) are the popular ones. UL was 
developed by McFadden (9) in the early 1970's. This model is inconsistent with 
the paradigm of random utility maximization (RUM). 	But, it has been used 
frequently as a diagnostic tool for detecting the IIA property in MNL models. 
NL and OL models were developed in the late 1970's and early 1980's by McFadden 
(10) and Small (11, 12) respectively. These models are consistent with RUM, but 
their abilities to identify similarities among choice alternatives are limited. 

The limitation of the NL model can be demonstrated with the following example. 
Suppose we use a NL structure to model the choice from a set of six travel mode 
alternatives. This choice set contains three automobile modes: 

Al --- Drive Alone, 
A2 --- Shared Ride Two Persons in Car, and 
A3 --- Shared Ride Three or More Persons in Car, 
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and three transit modes: 

Ti --- Walk Access to Transit, 
T2 --- Park-and-Ride Access to Transit, and 
T3 --- Kiss-and-Ride Access to Transit. 

One natural NL model structure would be to group the three automobile modes into 
a composite auto alternative and the three transit modes into a composite transit 
alternative. Under such a circumstance, the NL model structure will allow one 
parameter to represent the similarity among the three auto modes and another 
parameter for the three transit modes. In other words, one single correlation 
is assumed for the three auto modes, and another one for all three transit modes. 
Differential similarity among modes within each composite alternative is not 
possible for this structure, despite the fact that, for example, the correlation 
pattern between walk access and park-and-ride access to transit may be quite 
different from that between park-and-ride and kiss-and-ride access to transit. 
Independence between auto modes and transit modes has to be assumed on the 
marginal choice level. This independence assumption on the marginal level is 
another conceptual problem in NL. Consider a situation in which the park-and-
ride transit mode and the three automobile modes are using the same set of access 
links in the minimum paths. It would be unrealistic to assume that the park-
and-ride transit mode is independent of automobile modes. Thus, a more flexible 
model is needed. 

Ordered Logit (OL) is another model structure that is able to partially relax 
the IIA assumption in MNL. This structure has been useful for modeling 
situations where choice decisions are made incrementally. Examples of such 
decisions are the number of cars to be owned by a household, or the number of 
children to be raised in a family. With these choice situations, OL is able to 
capture the similarity among adjacent alternatives. Independence is assumed 
among the disjoint alternatives. 

This paper presents a new structure for probabilistic discrete choice models. 
This model is derived from assuming choices between paired combinations of 
alternatives; thus, it is called the paired-combinatorial logit (PCL) model. 
The PCL model belongs to the family of McFadden's Generalized Extreme Value (GEV) 
model structures and is consistent with the paradigm of RUM. Unlike NL and OL, 
PCL is able to identify the similarity between any binary pair of alternatives 
in the choice set. Thus, it is conceptually more flexible than the NL and OL 
structures. This model also is considered more practical than MNP and CCL models 
since this model is mathematically tractable and its choice probabilities and 
elasticity measures can be computed without numerical integration. 

The remainder of this paper is organized as follows. Section 2 presents the 
analytical formula of the model. 	Section 	3 presents a two-dimensional 
formulation of the model. Section 4 demonstrates an empirical implementation 
of the model. Section 5 concludes this paper and suggests future research 
directions. 
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2. 	ANALYTICAL FORMULA 

2.1 	Deriving the Model 

In a significant generalization of MNL, McFadden (10) has derived the GEV model. 
The GEV model is defined as follows: 

Let G(Y1, Y2...Yn), for Y1, Y2...Yn > 0, be a function with the following 
properties: 

1. G is non-negative. 

2. G is homogeneous of degree one; that is G(aY1, aY2...aYn) — a G(Y1, 

3. Lim G(Y1, Y2...Yn) — w, for k — 1, 2, ...n. 
Yk `o 

4. The lth partial derivative of G with respect to any combination of 1 
distinct Yk's, k — 1, 2,...n, is non-negative if 1 is odd and nonpositive 
if 1 is even. 

If G satisfies these conditions and G1 (Y1, Y2,...Y,,) denotes dC/dY1, i — 1, 2, 
...n, then 

eV1 Gi(eV1, e°2, ..e°n) 
P(i) 	 (1) 

G (ev1 ev2 	evn) 

defines the GEV model. In Equation (1), Vi is the systematic utility component 
of alternative i. Vi often is assumed as a linear function of parameters E and 
systematic attributes X1, 

V1 — g X1 	 (2) 

McFadden showed that the choice model defined by Equation (1) is consistent with 
RUM. 

In this paper, I propose to substitute the following G function into McFadden's 
GEV model 

N-1 N 
G(Y1 Y2 ...Yn ) — E E (1-oii) [yi1/1 011 + yi1/1-oij~ 1-o1j where 0 < ou < 1. 	(3) 

1-1 
 

j-1+1 

This G function contains N!/(N-2)121 terms, which are all the possible paired 
combinations in the choice set of N alternatives. 

It can be shown that this G function satisfies the four conditions laid out by 
McFadden (15) and 
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Gi - E  (1-oii) [Yil/(1-6li)  
J
fi 	

1 

Substituting Equations (3) and (4) into (1), we can obtain the PCL model as 
Equation (5). 

E evi/(1-oiJ) (l-oii) 
 [evi/(1-oiJ) + evJ/(1-vli)] -oiJ 

P(i) 

 

(5) 

 

N-F1.  N 
	(1-0k1) [ek/(1-okl) + ev1/(1-ok1) ] 1-okl 

k-1 1-k+l 

The PCL model can be rewritten as 

P(i) - E P(ilij) P(ij) 
jri 

where 

(6)  

(7)  

 

ev1 / (1-oiJ) 

P(iiij) 

 

 

evi/(1-oij) + eVi/(1-oii) 

is the conditional probability of choosing alternative i given the chosen binary 
pair (ij), and 

(1"oii) [ evi/(1-oiJ) + eVi/(1-oii) ] 1-oiJ 

P(ij) 

 

(8)  

 

N-1 	N 
F 	F 	(l-Okl) [evk/ (1-ok1) + evl/ (1-okl) ] 1-okl 
k-1 	1=k+1 

is the marginal probability for the binary pair (ij). 

2.2 Elasticities 

The disaggregate direct elasticity implied by the PCL model can be derived as 

8P(i) Xi  
Eli - — — - E (-P(i) + E 

ax, 	Pi 	 ifi 

and the cross elasticity 

P(ij) P(ilij)[1-oliP(ilij)]/[P(i)(1-au))) Xi ( 9 ) 

(4) 

8P(i) 	Xi  
Eii  - 	— S (P(j) + 

oii 
(10) 

 

8Xi 	Pl 	1-olJ 	P(i) 

Setting all akl's to zero, the PCL reduces to the standard MNL model 
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and the associated elasticities become 

E11 - B[1-P(i)] 

E1j - -BPi Xj 	 (12) 

2.3 	Difference Between NL and PCL Models 

The NL model is not a subset of the PCL model. The major difference between 
these two model structures lies in their respective ability to identify 
similarity among alternatives. 	Let's take the six-mode choice situation 
presented in Section 1 as an example. For the NL formulation, the similarity 
structure among the six alternatives is defined as in Table 1. 

Similarities between auto modes and transit modes are forced to zero because a 
MNL structure is used on the marginal choice level. The three similarities among 
auto modes are forced to one parameter oA and the three among transit modes are 
forced to CT. Only two similarity parameters are identified by the NL structure. 
As for PCL structure, all 15 (61/(4121))similarities are identifiable. 	Now 
suppose we force these 15 similarities in a PCL to the three values (i.e. 0, CA, 
UT) as set by the NL model in Table 1. Then the restricted PCL model will become 

	

 eVl/(1-0A) 
~E 

((1-4,1) (e 'l/(1-0A) + eVj/(1-oA))-oA] 	EeVl6 

j-2 	 1 

P(1) 	 (13) 

E E(1-cut)(eV1/(1-oA)+evj/(1-oA))1-oA+ E E(1-oT)(eV1/(1-oT)+evj/(1-oT))1-oT +E E(eV1+eVj ) 
1-1 j-1+1 	 1-4 j-1+1 	 1-1 j-4 

which corresponds to the NL model 

f 3 eV1/(1-0A) 	[E eVj/(1-oA)]1-oA 
j-1 	

1 

P(1) 	 (14) 

evj/(1-oA) 	r ~l evj/(1-cA)]1-cA + 
S.4

evj/(1-oT) } 1-oT 

Equation (13) will be identical to (14) only when aA - 0T - 0, which is the case 
for the MNL structure. 

Although NL and PCL are different in structure, both models can solve the red 
bus/blue bus paradox. Let's look at the NL case first. Suppose alternative 2 
(red bus) and 3 (blue bus) are highly correlated (i.e. 023 - 1), and alternative 
1 (auto) is independent of alternative 2 and 3 (i.e. 012 - 013 - 0). Then the 
choice probabilities 

P(auto) - P(1) - eV1/t ev1 + (e52/(1-023) + eV3/(1-023))1-023 

P(red bus) - P(2) - eV2 [1 + e(v3-52)/(1-023)1 -o23/r0. + (eV2/(1-023) + e53/(1-023))1-023] 
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P(blue bus) - P(3) - eV3  [1 + e(V2-v3)/(1-n23)]-o23/[ eVl + (ev2/(1-023) + eV3/(1-023))1-023] 

As 023  -` 1, 

P(1) - ev1/[ eV1 + emac(V2, v3)] 

P(2) - ev2/[eVl + eV2] 	if V2  < V3  

.5  e'1 / e'11  + e"21  if V2 - V3 

0 	if V2  > V3  

Let V1  - V2  - V3  - 0, then P(1) - 1/2 and P(2) - P(3) - 1/4, which is the desired 
property of NL model when predicting red bus/blue bus choice probabilities. 
Let's look at the PCL case. The choice probabilities 

P(auto) - P(1) - 2ev1/[2ev1 + eV2 + ev3]  

P(red bus) - P(2) - ev2/[2ev1 + ev2 + ev3]  

P(blue bus) - P(3) - ev3/[2ev1 + ev2 + ev3 ]  

Let V1  - V2  - V3  - 0, then P(1) - 1/2 and P(2) - P(3) - 1/4, which also satisfies 
the desired property of relaxing IIA. 

2.4 CALIBRATING PCL MODELS 

Maximum likelihood estimation, due to its ability to produce efficient and 
consistent estimators, is the most accepted method for calibrating discrete 
choice models. MNL and MNP models have been calibrated by the full information 
maximum likelihood (FIML) method in numerous studies. NL models frequently are 
calibrated by the limited information maximum likelihood (LIML) method. In the 
LIML method, the parameters in the NL model are calibrated sequentially. In the 
first step, the parameter 8/(1-a) is calibrated based on the conditional choice 
model, and the log sums of denominators computed. 	In the second step the 
similarity parameter (1-a) is calibrated based on these log sums. The attribute 
parameters E are then recovered by multiplying 8/1-a from the first step with 
(1-a) estimated in the second step. LIML method, computationally speaking, is 
simpler than the FIML method. However, the LIML method does not yield efficient 
estimators of B and a. Cosslett (13) and Chu (14) applied the FIML method to 
calibrate NL models in the transportation mode choice and the residential 
location choice context. Both studies found that the parameters estimated from 
the LIML method are remarkably different from those the FIML parameter estimates. 
Because the parameter values are sensitive to the calibration method being used, 
and differences in parameter estimates between alternative estimation methods 
are so large, beyond the range implied by the asymptotic standard errors, 
McFadden (2) cautioned the users of the LIML method in interpreting the parameter 
values, and suggested further research on the numerical and statistical 
properties of these two methods. 
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The FIML estimation method is applicable for calibrating the attribute parameters 
B and the similarity parameters a in the PCL model. The calibration can be 
achieved in two steps. In the first step, we force all a's equal to zero and 
calibrate the B parameters in a MNL model. In the second step, using the 
calibrated coefficients of B as a starting point, we can calibrate both B and 
a simultaneously. This method may not necessarily lead to a global maximum of 
the log likelihood function. However, a local maximum, which is superior to MNL 
model is guaranteed. 

3. 	TWO DIMENSIONAL FORMULATION OF PCL MODEL 

Applying the NL model structure to a multidimensional choice situation has been 
discussed extensively in Ben Akiva and Lerman (i). Suppose there is a two-
dimensional choice situation with 3 mode alternatives and 3 destination 
alternatives. Then, the NL model structure can be written either: 

P(md) — P(mld) P(d) 
or 

P(dm) — P(dim) P(m) 

In the first formulation, the similarity matrix among the nine joint choice 
alternatives is only allowed among the 3 mode alternatives. It is shown in 
Table 2. 

Correlations among the destination alternatives are not allowed in this 
formulation. When the second formulation is used, only the similarities among 
the three destination alternatives are allowed as shown in Table 3. 	The 
similarities among modes can not be incorporated. One simple PCL model structure 
allowing similarities among modes and destinations simultaneously would have a 
similarity pattern as shown in Table 4. The multidimensional PCL model can be 
written explicitly as: 

NUM 

PA1 
DEN 

Where 

NUM — evA1 (1-0) E [1 + e(vAm-vA1)/(1-0)
] 

v +  
m/1 

evA1 (l-p) E [1 	 p) + e(vd1-vAl)/(1- 1-p + 
dfA 

E 	E 	eVAl  [ 1 	evdm 
d/A mfl 

and 
3 

DEN— (1-O) % (evAm/(1-o)+evBm/(1-o) )i-o+(evAm/tl-o)+evcm/(1-o) )i-o+(evBm/(1-o)+evcm/(1-o) )1-0 + 
m-1 
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C 

(1-P) E ( eVd1/1-p+eVd2/1-P)1-P+(eVdl/1-P+eVd3/1-P)1-p+( eVd2/1-P+eVd3/1-P)1-p + 
d-A 

3 	C 
4 E E 

	evdm 
m-1 d-A 

This PCL model is more complicated than the standard NL model. With the current 
speed of electronic computers, this model, like MNP, may be too expensive for 
production purposes. However, this model structure definitely is useful for 
detecting the co-existence of mode similarities and destination similarities in 
an effective manner. In the future, when computer speed is enhanced, this model 
structure will become more practical. 

4. 	EMPIRICAL APPLICATION 

The purpose of this section is to demonstrate that a PCL model can be calibrated 
by the FIML method and that it indeed provides an alternative model structure 
to MNP and NL when IIA is an important issue in the development of a MNL model. 
Due to the limited computer resources available, the data set used for this 
empirical study is very small. It contains 100 individual CBD workers, extracted 
from the 1970 Chicago census survey. Each individual is associated with four 
travel modes: 

1. Private Automobile, 
2. Rapid Transit, 
3. Commuter Rail, and 
4. Bus. 

Using this small data set, a MNL and three PCL models were calibrated by a 
FORTRAN program. All four models are assumed with a common specification of 
utility function: 

• Mode Bias for 	One Way Total 	Annual Housing 
V1  - Alternative i + fil Travel Time + 02  and Transportation 

in Minutes 	Cost in Dollars 

The estimation results of the MNL model and the PCL models are reported in 
Table 5. 	The equal share model for these 100 cases has the log likelihood 
-138.6. 	The market share model for these 100 cases has the log likelihood 
-136.6. The likelihood ratio test indicates that the market share model does 
not reject the equal share model at the .05 level (i.e. (138.6 - 136.6) * 2 -
4.0 < 7.82). 

When calibrating PCL models, we used the MNL model as the starting point and 
estimated the most flexible PCL model that calibrates the similarity coefficients 
for all alternative pairs. Comparing this PCL model with the MNL model we can 
observe that the magnitude of the /3 coefficients are extremely close. In fact, 
all fi coefficients in the PCL model are within the 90% confidence intervals 
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implied by the standard errors estimated in the MNL model. This indicates that 
the MNL model would estimate the p parameters quite accurately even if MNL is 
an incorrect model structure. The improvement in the log likelihood is very 
small. The likelihood ratio test indicates that the MNL model cannot be rejected 
in favor of the PCL model. 

Examining the similarity matrix, we found all the similarity coefficients are 
insignificant. The similarity between the auto mode and of the three public 
transit modes is negative, a result which is prohibited by our definition of a. 
This phenomenon is attributed to the missing attributes effect in the model. 
More complete specification of the utility function may change these negative 
similarity coefficients to positive. 

The second PCL model was estimated by forcing all the negative similarity 
coefficients in the previous model to zero, allowing correlations among the three 
transit modes only. 	The results are also reported in Table 5. 	the only 
significant similarity coefficient, according to the t statistics, is the pair 
of rapid transit and commuter rail modes. The similarity coefficients between 
the two rail modes and the bus mode are insignificant. When comparing the 
similarity coefficients from one model to the other we found that the similarity 
coefficients changed substantially. The similarity between rapid transit and 
commuter rail, for instance, has increased from 0.63 to 0.93. 	Thus, the 
estimates of similarity coefficients are highly sensitive to the specification 
of the similarity structure. The third PCL model was estimated by forcing all 
similarity coefficients, except the one between rapid transit and commuter rail, 
to zero. The results, as reported in Table 5, shows a new similarity coefficient 
of 0.35, quite different from those obtained in the other two PCL models. 

Based on Table 5, we can conclude that tF.e sample size of 100 cases is too small 
to detect the statistical difference between the MNL and the PCL models. The 
p coefficients are remarkably similar in either one of the PCL structures. The 
estimates of the similarity coefficients are quite unstable. However, the models 
indicate that there does exist a significant correlation between the random 
utilities of rapid transit and commuter rail modes. And among the three transit 
modes, there exists some kind of varied similarities which cannot be captured 
by the NL model. 

Because the estimate of the similarity coefficient is very sensitive to the 
specification of the similarity structure, it was decided to further explore how 
this sensitivity will affect the predicted choice probabilities and the implied 
elasticities. A typical household with the following characteristics: 

One Way Travel Time --- 20 minutes (Automobile), 
25 minutes (Rapid Transit), 
35 minutes (Commuter Rail), 
45 minutes (Bus), 

Annual Housing Cost --- 2500 dollars, 
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One Way Travel Cost --- 2.6 dollars (Automobile), 
0.6 dollars (Rapid Transit), 
1.3 dollars (Commuter Rail), 
0.5 dollars (Bus). 

was assumed and the choice probability of each mode predicted by these four 
models for this household is reported in Table 6. From this table we can see 
that MNL model tends to underestimate the usage of automobiles and overestimate 
the usage of transit. The predicted choice probabilities are similar between 
those produced by PCL #2 and PCL #3. However, generally speaking, the more 
restrictions we have imposed on the similarity structure the higher is the 
predicted transit share. Between PCL #2 and PCL #3, the attribute parameters, 
p, are very close, but the similarity coefficients, a, are very different 
(0.35 vs. 0.62). 	Even with this difference in place, the predicted choice 
probabilities are still very close with each other, which suggests an 
insensitivity of choice probabilities to the similarity coefficients as long as 
the major similarities are already accounted for. 

The direct elasticities with respect to travel time and travel cost implied by 
these four models are reported in Table 7. In this table we can see that, for 
the case of travel time, in each column, automobile mode generally has the 
smallest elasticities with magnitude, being less than one (in absolute value). 
This suggests that auto travel demands are inelastic to travel time whereas 
transit demands are elastic to time. In other words, as travel time increases, 
auto users will not very likely change to transit. But transit riders are more 
likely to switch to auto. 

When comparing the elasticities of automobile mode across alternative model 
structures, we can see that MNL model is associated with larger values of 
elasticities (in absolute value) in auto travel demand. That means that MNL 
model tends to overstate the sensitivity of automobile usage as compared to the 
PCL model. Suppose PCL is the correct model structure, using MNL model to 
analyze transportation policy impacts may result in an overestimation of transit 
usage and underprediction of auto usage. 

5. 	CONCLIISION  

This paper presents a new model structure --- paired-combinatorial logit (PCL) -  
-- as an alternative to MNP and NL structures in relaxing the IIA property of 
MNL models PCL is more flexible than NL in the sense that no hypothesis on the 
"decision-tree" is needed prior to model calibration and the random utilities 
can be assumed with any reasonable pattern of correlation. MNL is a special case 
of PCL in which all similarity coefficients are set to zero. The NL model cannot 
be obtained as a special case of PCL. PCL is comparable to a special class of 
MNP in which all random utilities are assumed with identical variance. PCL is 
more practical than MNP since PCL is mathematically tractable. The probability 
function and the elasticity measures are all in closed form. Since MNP requires 
numerical integration, or Clark's approximation (the accuracy of which is a 
serious concern to model users), PCL appears to be an attractive alternative 
that warrants consideration. A two-dimensional formulation of PCL is presented 
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in this paper. This two-dimensional structure is much more complicated than the 
popular NL structure. 	However, PCL is able to identify the similarity 
coefficients in both dimensions simultaneously. 

Three PCL models were calibrated with 100 cases of mode choice data extracted 
from 1970 Chicago Census. These models were compared against a MNL model. The 
PCL models were not able to reject the MNL model based on likelihood ratio 
statistics. However, the similarity between rapid transit and commuter rail 
modes appears to be significant. Comparing MNL and the calibrated PCL models, 
we can conclude that the attribute parameters calibrated for MNL models are close 
to those of PCL models. In other words, MNL model would estimate the attribute 
parameters quite accurately even if MNL is the incorrect model structure. 
However, in terms of predicting choice probabilities or estimating demand 
elasticities, MNL model tends to overpredict the usage of automobiles and 
overstating the sensitivity to travel time and travel cost of automobile travel. 

Several future research directions can be identified. First, calibrating a PCL 
model with larger sample sizes (e.g. 500-1000 cases) and a more complete 
specification would be a worthwhile effort. From this study, the PCL models 
are not significantly different from MNL, most likely due to the small sample 
size used in estimation. Second, more detailed comparisons between the PCL model 
and MNP and NL models can be carried out. With today's computer speeds, the PCL 
structure may still be too complicated for production purposes; however, PCL 
definitely would be a useful tool for identifying violations of IIA (or 
identifying desirable NL tree-structure) in the calibration stage of mode choice 
models. Third, implementation of multi-dimensional PCL models may be another 
area of fruitful research. 
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TABLE 1: SIMILARITY MATRIX FOR NL MODEL STRUCTURE 

1 	S 	S 	W 	P 	K 
D 	R 	R 	L 	N 	N 
A 2 3+ K R R 

1. DA 	1 
2. SR2 	on  1 
3. SR3+ 	oA  oA  1 
4. WLK 	0 	0 	0 
5. PNR 	0 	0 	0 
6. KNR 	0 	0 	0 

TABLE 2: 	NL MODEL WITH MODE AS CONDITIONAL CHOICE 

	

AAABBBCCC 	--- Destination Alternative 
1 1 	2 3 	1 	2 	3 	1 	2 3 	--- Mode Alternative 

A 1 1 
A 2 a 	1 
A 3 ca l 
B 1 0 	0 0 	1 
B 2 O 	O O 	a l 
B 3 0 	0 0 	a o 	1 
C 1 0 	0 0 	0 0 	0 1 
C 2 O 	0 0 	0 0 	0 0 1 
C 3 0 	0 0 	0 0 	0 a al 

TABLE 3: NL MODEL WITH DESTINATION AS CONDITIONAL CHOICE 

1 A 	A 	A 	B 	B 	B 	C 	C 	C 
1 1 	2 3 1 	2 3 1 2 3 

A 1 1 
A 2 01 
A 3 0 	0 1 
B 1 p 	0 0 1 
B 2 0 	p 0 0 	1 
B 3 00 p 0 	0 1 
C 1 p 	0 0 p0 0 1 
C 2 0 	p 0 0 	p 0 0 1 
C 3 00 p 0 	0 p 0 0 1 
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TABLE 4: 	PCL MODEL SIMILARITY STRUCTURE 

1 A 	A 	A 	B 	B 	B 	C 	C 	C 
I 	1 	2 	3 	1 	2 	3 	1 	2 	3 

A 1 
A 2 al 
A 3 o 

	
al 

B 1 p 	0 0 1 
B 2 O 	p 0 a 1 
B 3 0 	0 p a a 	1 
C 1 p 	0 0 p 0 	0 	1 
C 2 0 	p 0 0 p 	0 	a 	1 
C 3 0 	0 p 0 0 	p 	a 	a 	1 

TABLE 5: 	COMPARISON BETWEEN PCL AND MNL MODELS 

MNL PCL #1 PCL #2 	PCL #3 

Time -.075 -.085 -.064 -.078 
(-4.2) (-4.0) (-4.0) (-4.3) 

Log (R+C) -1.89 -1.84 -1.86 -1.86 
(-4.0) (-4.0) (-4.0) (-4.0) 

Rapid Transit -1.31 -1.41 -1.32 -1.37 
(-1.2) (-1.0) (-1.0) (-1.0) 

Commuter Rail -.75 -.75 -.85 -.80 
(-2.0) (-2.0) (-2.0) (-2.0) 

Bus -.49 -.49 -.47 -.47 
(-1.0) (-1.0) (-1.0) (-1.0) 

LIA -138.6 -138.6 -138.6 -138.6 

LL~ -130.4 -128.2 -129.3 -130.2 

1 1 1 
(I) (I) (I) 

#1 	-.03 	1 #2 0 #3 0 1 
a® e (-.04) 	(I) a., - (I) (I) aum - (I) (I) 

-.06 	.63 1 0 .93 	1 0 .35 I 
(-.5) (.28) (I) (I) (3.5) 	(I) (I) (3.2) (I) 

-.59 	.04 .09 I 0 .07 	.16 1 0 0 0 1 
(-.6) (.01) (.03) (I) (I) (.2) 	(.5) (I) (I) (I) (I) (I) 
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TABLE 6 

C.S. 	Chu 

PREDICTED PROBABILITIES 

Direct Elasticity 
With Respect to 
Travel Time PCL #1 PCL #2 PCL #3 MNL 

Automobile 0.68 0.64 0.63 0.58 
Rapid Transit 0.12 0.15 0.17 0.19 
Commuter Rail 0.07 0.09 0.10 0.13 
Bus 0.13 0.13 0.10 0.10 

Total 1.00 1.00 1.00 1.00 

TABLE 7 DIRECT ELASTICITIES 

Direct Elasticity 
With Respect to 
Travel Time PCL #1 PCL #2 PCL #3 MNL 

Automobile -0.47 -0.47 -0.58 -0.64 
Rapid Transit -1.99 -1.39 -1.71 -1.51 
Commuter Rail -3.00 -2.14 -2.63 -2.29 
Bus -2.61 -2.63 -3.15 -3.03 

Direct Elasticity 
With Respect to 
Travel Cost PCL #1 PCL #2 PCL #3 MNL 

Automobile -0.18 -0.23 -0.24 -0.28 
Rapid Transit -0.19 -0.18 -0.18 -0.17 
Commuter Rail -0.40 -0.38 -0.38 -0.35 
Bus -0.12 -0.16 -0.16 -0.16 
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