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1. INTRODUCTION 

The dynamic system optimal traffic assignment model is formulated 
as a continuous time optimal control problem for a network with multiple 
origin-destination pairs. 	This paper resolves three important 
theoretical questions inherited from the previous models. First, more 
precise economic interpretation of the optimality conditions is 
provided. Second, it is established that the optimality conditions are 
both necessary and sufficient. Third, singular controls are tested for 
optimality using the generalized Legendre-Clebsch condition. Under the 
steady-state assumptions, the model is also proven to be a proper, 
dynamic extension of a static system optimal traffic assignment model. 

2. DYNAMICS AND CONSTRAINTS 

Let us consider a transportation network represented by a directed 
graph G(N,A), where N is the set of nodes and A is the set of arcs. The 
cardinalities of N and A are assumed to be v and r, respectively. We 
also assume that N includes the three subsets of origin, destination and 
intersection nodes, which are not mutually exclusive because a node can 
be an origin, destination, and intersection at once. In this paper, the 
index "k" will denote an origin node or an intersection node, and the 
index "n" will denote a destination node. The cardinality of the set of 
destination nodes is assumed to be q. 	In addition, the set of paths 
connecting origin "k" and destination "n" will be denoted by Pkn' 

The transportation network will be regarded as a controllable 
dynamic system that evolves over time and space. We will consider a 
fixed time period [0,T]. Let xa(t) denote the traffic volume on arc a 
at time t, that is, the number of vehicles traveling on arc a at time t. 
We assume that vehicles are uniformly distributed over the length of 
each arc at every instant in time. At any time t, the network is in 
some state which is described by r real numbers, xl(t), x2(t), 	 
xr(t). Since the network has multiple destinations, we need to identify 
vehicles traveling on each arc by destination. Let xan(t) denote the 
traffic volume on arc a with destination n at time t. It follows that 

(1) xa(t) - E xan(t) 	V aeA V te[O,T]. 
neN 

In order to depict a physical phenomenon of congestion on each 
arc, the exit functions ga[xa(t)] are assumed to be nonnegative, 
increasing, and continuously differentiable for all xa(t)>_0 and te[O,T] 
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with additional restriction that ga(0) — 0 for all aeA. 	The exit 
functions ga[xa(t)] are further assumed to be linear in xa(t) in order 
to keep the property of separability for a multidestination network 
analysis as follows: 

(2) ga[xa(t)] — Eaxa(t) 
	

V aeA V te[O,T) 

where £a  is a positive, time-invariant constant. Note that the exit 
functions were assumed to be strictly concave in a single destination 
case (see e.g. Wie, 1988b). We need to identify vehicles exiting from 
each arc at each instant by destination. Let gan[xan(t),xa(t)] denote 
the number of vehicles exiting from arc a with destination, called the 
exit flow rate. It follows 

(3) ga[xa(t)] — E gan[xan(t),xa(t)] 	V aeA V te[O,T]. 
neN 

In order to consider a first-in-first-out queue discipline, we assume 
that vehicles with different destinations are completely mixed on each 
arc at each instant in time and further assume that 

(4) gan[xan(t),xa(t)] — [xan(t)/xa(t)] ga[xa(t)] 

- axan(t) 	V acA V neN V tc[O,T]. 

Equation (4) tells us that the exit functions gan[xan(t),xa(t)] are 
separable, nonnegative, increasing, and affine. 

The dynamic evolution of the state of each arc is described by the 
first-order linear differential equations: 

(5) dxn(t)/dt m xa(t) — ua(t) — ga[xa(t)) 	V aeA V te[O,T] 

where ua(t) denotes the inflow rate on arc a at time t, that is, the 
number of vehicles entering arc a at time t. It follows that 

(6) ua(t) — X uan(t) 	V aeA V te[O,T] 
neN 

where uan(t) is the inflow rate on arc a at time t with destination n. 
The dynamic evolution of the state of each arc for each destination can 
also be described by the first-order linear differential equations: 

(7) dxan(t)/dt m xan(t) — uan(t) — gan[xan(t),xa(t)] 

— uan(t) — £axan(t) 

V aeA V neN V te[O,T]. 

Throughout the paper, xan(t) will be called the state variable and 
uan(t) the control variable. 	Equation (7), called the state equation, 
tells us that the instantaneous rate of change of the state variable 
with respect to time is a function of the exit flow rate and the inflow 
rate on each associated arc. 	Equation (7) can be 'interpreted as an 
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infinity of scalar equality constraints indexed by time t and 
destination n. 	In addition, we assume that the number of vehicle 
traveling on arc a with destination n is a known nonnegative constant at 
the initial time t-0: 

(8) 	xan(0) - xan'o  2 0 
	

V aeA V neN. 

From equations (7) and (8), the value of the state variable can be 
determined as follows: 

Juafl(r)

t 	
f
t 

xan(t) - xan'o  +  	dr - 
J 

çxan(r) dr 

V aeA V neN V te[O,T]. 

The flow conservation constraints are stated as follows: 

(10) hkn[x(t),u(t)] m Skn(t)  + E faxan(t) 	E uan(t) - 0  
aeB(k) 	aeA(k) 

V keN V neN V te[O,T], krn 

where Skn(t) is the rate of flow generated at node k and destined to 
node n at time t; A(k) is the set of arcs whose tail node is k; and B(k) 
is the set of arcs whose head node is k. We assume that Skn(t) is a 
known nonnegative and continuous function of time. The scalar function 
hkn[x(t),u(t)] can be regarded as the instantaneous mixed state-control 
equality constraint. 

We ensure that the control variables are constrained as 

(11) 0 5 uan(t) 5 Skn(t)  + 	eaxan(t)  
aeB(k) 

V aeA V neN V te[O,T], kfn. 

Equation (11) tells us that the value of the control variable uan(t) 
cannot exceed the upper bound that changes over time as a function of 

and YaEB(k)£axa(t). 	Note that the previous models did not Skn(t)  
consider the upper bounds of the control variables. 	The control 
variables are assumed to be "piecewise continuous" for the period [0,T]. 
In this paper, the term "piecewise continuous" is used in the sense that 
a function is continuous except at a finite number of points and the 
one-sided limits always exist at the points of discontinuity. We also 
ensure that the state variables are nonnegative. However, we do not 
subsequently consider nonnegativity of the state variables in an 
explicit manner, because the assumption that gan[0,xa(t)] - 0 ensures 
that the state variables are always nonnegative. 

We shall define the state and control vector functions to effect 
some economy of notation as follows: 

(12) x(t) - ( 	 xa1(t), .. . xaq(t), 	 ) 	V te[O,T], 

(9) 

0 	 0 
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(13) 	u(t) — ( 	 ual(t), 	uag(t), 	 

3. MODEL FORMULATION 

V te[O,T]. 

The dynamic system optimal traffic assignment model is formulated 
as a continuous time optimal control problem: 

f
T 

(14) 	Minimize J — 	

J

Ca[xa(t)] dt 
aeA o 

subject to 

• 
xan(t) — uan(t) — £axan(t) 	V aeA V neN V te[O,T] 

Skn(t) + E  {axan(t) — E uan(t) — 0 
aeB(k) 	aeA(k) 

V }cell V neN V te[O,T], Icon 

xan(0)  — xan,o L 0 	V aeA V neN 

0 5 uan(t) S Skn(t) + E &axan(t) 
aeB(k) 

V aeA V neN V te[O,T], kon. 

Let Ca[xa(t)] denote the instantaneous transportation cost rate on arc a 
where xa(t) is the number of vehicles traveling on arc a at time t. 
We assume that the functions Ca[xa(t)] are nonnegative, increasing, 
differentiable, and strictly convex for all xa(t) L. 0 and te[O,T]. 
Thus, the term EaeA  Ca[xa(t)] is considered to be the instantaneous 
total transportation cost rate (e.g. measured in dollars per minute). 
Therefore, the performance index J has an economic interpretation as the 
total transportation cost spent during the fixed time interval [O,T] in 
the network (e.g. measured in dollars). It should be noted that J is 
additive and separable. 

The optimal control problem (14) is to find optimal trajectories 
of the state and control variables that minimize J and satisfy all the 
constraints during the fixed time interval [O,T]. 	In other words, an 
optimal solution of the dynamic system optimal traffic assignment model 
can be referred to as a time-varying traffic flow pattern that minimizes 
the total transportation network cost. 	For example, each optimal 
control trajectory will represent the temporal distribution over the 
fixed time interval [O,T] of the number of vehicles entering arc a with 
destination n at each instant. 

4. NECESSARY CONDITIONS 

The necessary conditions for an optimal solution of the control 
problem (14) can be derived by the Pontryagin minimum principle 
(Pontryagin et al., 1962). We first construct the Hamiltonian: 
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(15) H[x(t),u(t),a(t)] — E Ca[xa(t)] 
aeA 

+ E E Aan(t)[uan(t) -
aeA neN 

where Aan(t) is the costate variable associated with the state equation 
(7) and a(t) is described by ( 	 Aal(t), .. , aaq(t), 	 ) for all 
te[0,T]. 	We then construct the Lagrangian, which is the augmented 
Hamiltonian: 

(16) L[x(t),u(t),a(t),µ(t)] — H[x(t),u(t),a(t)] 

+ E 	E µkn(t)(Skn(t)  + E  £axan(t) — E uan(t)) 
keN neN 	aeB(k) 	aeA(k) 

where pkn(t) is the Lagrange multiplier associated with the flow 
conservation constraint (10) and µ(t) is described by ( 	 µki(t), 
..., Pkq(t). 	)  

The Pontryagin minimum principle requires that the differential 
equations governing the evolution of the costate variables must be 
defined as follows: 

(17) jan(t) — — âL[x(t),u(t),A(t).µ(t)]/axan(t) 

— — Ca'[xa(t)] + a[Aan(t) — µkn(t)] 

V aeB(k) V keN V neN V te[0,T], Icon 

where 

ôCa[xa(t)] 	dCa[xa(t)] 	axa(t) 

axant) 	dxa(t) 	axant) 

Equation (17) will be called the costate equation. 	Let Oan[xan(T)] 
denote the salvage value function when the terminal state is xan(T). 
Since we impose no constraint on the values of the state variables at 
the terminal time T, the values of the salvage value functions must be 
equal to zero. 	Therefore, the terminal boundary conditions on the 
costate variables, which are also called the transversality conditions, 
are given by 

(19) aan(T) — a0an[xan(T)]/axan(T) — 0 
	

V aeA V neN. 

The Pontryagin minimum principle allows us to convert a continuous 
time optimal control problem into a series of constrained static 
optimization problems at each instant in time. It follows that 

(20) Minimize L[x(t),u(t),a(t),p(t)] 

subject to 

n(t)] 

Ca '[xa(t)]• 
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0 < uan(t) < Skn(t) + 	axan(t) 
aeB(k) 

V aeA(k) V keN V neN V te[O,T], icon. 

Thus, the Pontryagin minimum principle can be regarded as the extension 
of the method of Lagrange multipliers to dynamic optimization problem. 
Notice that we cannot minimize the Lagrangian with respect to the state 
variables because they are not subject to choice; however, we must 
choose the time-trajectories of the optimal control variables so that 
the resultant values of the state variables could minimize the total 
transportation cost over the period [0,T]. 

Given the values of x(t), )(t) and p(t), the necessary conditions 
for u*(t) to be optimal in the static optimization problem (20) are: 

(21) 	L(x*(t),u*(t),a(t),p(t)] < L[x*(t),u(t),a(t),p(t)] 

✓ u(t)eU[x(t)] V te[0,T] 

where U[x(t), denotes the set of admissible controls satisfying (11). 
Note that x (t) and u*(t) are the optimal values of the state and 
control variables. Since the Lagrangian (16) is linear in the control 
variables, minimization of the Lagrangian with respect to u(t) requires 
that only three cases can occur: 

0 	if aan(t) > pkn(t) 

(22) 	uan*(t) - 	singular 	if aan(t) - pkn(t) 

Skn(t) + E  Eaxan(t) 	if aan(t) < Pkn(t) 
aeB(k) 

✓ aeA(k) V keN V neN V te[O,T], ksn. 

The possible optimal solution thus involves a combination of "bang-bang" 
control and "singular" control; in other words, the optimal control lies 
either on the boundary of the admissible control set or within the 
boundary. At each instant in time, bang-bang controls can be considered 
all-or-nothing traffic assignment, whereas singular controls can be 
considered stochastic multipath traffic assignment. 	Note that each 
optimal control is determined by the sign of the partial derivative of 
the Lagrangian with respect to the control variable evaluated along the 
optimal trajectories, that is, 3L*/Ouan(t) - aan(t) - pkn(t). 	In 
general, the function [aan(t) - pkn(t)] is known as the switching 
function, since the optimal control switches between bang-bang control 
and singular control when [aan(t) - pkn(t)] changes its sign. 	This 
statement can also be expressed as a variational inequality: 

(23) 	(âL(x*(t),u*(t),a(t),p(t)]/ôu(t)).[u(t) - u*(t)] >_ 0 

✓ u(t)eU[x(t)] 	V te[0,T]. 
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In particular, for the case when Aan(t) — pkn(t), the Lagrangian cannot 
be minimized with respect to a choice of uan(t) and the Performance 
index J is said'to be insensitive to uan(t). Generally, if minimization 
of the Lagrangian leads to non-unique determination of control 
variables, the optimal solution is referred to as the singular control. 
Note that singular controls will be discussed in the subsequent section. 

The necessary conditions for optimality of the control problem 
(14) are summarized as follows: 

(24) xan(t) 	uan(t) — £axan(t) 	V aeA V neN V te[O,T] 

(25) xan(0) 	xan'° > 0 	V aeA V neN 

(26) Aan(t) 	— Ca'[xa(t)] + Ea(aan(t) — pkn(t)] 

V aEB(k) V keN V neN V te[0,T], k~n 

(27) aan(T) — O 

(28) uan*(t) — 

V aeA V neN 

if Aan(t) > pkn(t) 

if Aan(t) — pkn(t) 

if aan(t) < l+kn(t) 

singular 

Skn(t) + E Eaxan(t) 
aEB(k) 

 

V aeA(k) V kEN V neN V te(0,T], ktn. 

Note that the differential equations for the state variables and the 
differential equations for the costate variables plus all boundary 
conditions are called the cononical equations, which may be solved as a 
two-point boundary-value problem. The control problem (14) will have an 
optimal solution in the form of bang-singular-bang controls. 

5. SUFFICIENCY 

The Pontryagin's necessary conditions for optimality (24)-(28) can 
propose a certain number of admissible solutions, while assuring that 
there will be no other candidate that can solve the optimal control 
problem (14). However, the Pontryagin minimum principle cannot tell us 
whether an admissible solution is optimal or not. In this section, we 
shall establish that the Pontryagin's necessary conditions are also 
sufficient for the dynamic system optimal traffic assignment model (14). 
To this end we present the Seierstad-Sydsaeter sufficiency theorem 
(Seierstad and Sydsaeter, 1977, p.376-378) and generalize it for our 
control problem as follows: 

Seierstad-Sydsaeter Sufficiency Theorem 

Let [x*(t),u*(t)] be an admissible state-control pair. 	Assume 
that there exist vector functions a(t) and p(t) where A(t) is 
continuous and dA(t)/dt and p(t) are piecewise continuous. Then 
[x*(t),u*(t)] is an optimal state-control pair if the Pontryagin's 
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necessary conditions for optimality (24)-(28) are satisfied for 
all te[O,T] as well as the following conditions: 

(i) The derived Hamiltonian H[x(t),A(t)] is a convex function 
of x(t) on Au(t) if Au(t) is convex, where 

H[x(t),a(t)] - 	min H[x(t),u(t),a(t)] 
u(t)eAx(t) 

V te[O,T] V xeAu(t), 

Ax(t) - (u(t)eU[x(t)]: h[x(t),u(t)] - 0), and 

Au(t) - (x(t): h[x(t),u(t)] - 0 for some u(t)eU[x(t)]). 

(ii) The linear independence constraint qualification is 
satisfied for [x*(t),u*(t)] for all te[O,T], provided 

rank [âhkn(x,u)/âuan(t)] 	- the number of indices in I(t) 
keN 
aeA 

where I(t) - (i: hin(x*(t),u*(t)] - 0). 

We are now ready to state and prove the following theorem: 

Theorem 1. The optimality conditions (24)-(28) are both necessary 
and sufficient to characterize an optimal solution of the dynamic 
system optimal traffic assignment model (14). 

PROOF. To establish sufficiency we use the above Seierstad-Sydsaeter 
sufficiency theorem. It tells us that conditions (i) and (ii) must be 
satisfied for the necessary conditions (24)-(28) to be sufficient. 

First, the derived Hamiltonian can be written as 

(29) H[x(t).a(t)) - E Ca[xa(t)]  + E 	E aan(t)[uan(t) - &axan(t)1 
aeA 	aeA neN 

where uan(t)eAx(t) for all aeA, neN and tE[O,T]. We can see that the 
derived Hamiltonian is strictly convex for all xan(t) because Ca[xa(t)] 
was assumed to be a convex function of xa(t) for all aEA and £axan(t) is 
linear. 	Furthermore, the set Au(t) is convex because both the state 
equations (7) and the flow conservation constraints (10) are linear in 
the state and control variables. Hence, condition (i) is satisfied. 

Second, the v x r Jacobian matrix Jn  can be written for each 
destination neN and time te[O,T]: 

(30) Jn  - [ahkn[x(t),u(t)]/auan(t)) 
k-1, 	 ,v 
a-1, .. ,r 
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Since any arc belongs to only one set of the form A(k) which is the set 
of arcs whose tail node is k, each column in the Jacobian matrix Jn  has 
at most one non-zero element. It means that every Jacobian matrix Jn  
has v linearly independent rows; consequently Jn  must be of rank v. In 
the contrary case, the constraint qualification is not satisfied, since 
at least one of the rows in the Jacobian matrix consists of only zeros 
and thus the rows in the matrix are linearly dependent. Hence, condition 
(ii) is satisfied. Q.E.D. 

6. SINGULAR CONTROLS 

The singular controls are encountered in our control problem (14) 
because the Lagrangian (16) is linear in the control variables. Hence, 
the optimality conditions (24)-(28) derived by the Pontryagin minimum 
principle yield no useful information to determine the optimal control 
variable uan(t) when the value of the associated switching function 
[aan(t) - pkn(t)] is equal to zero for a finite time interval. 	This 
circumstance is referred to as a singular control. Nonetheless, it may 
be possible to derive an explicit expression for the singular control in 
terms of the associated state variables, costate variables, and Lagrange 
multipliers. If aL/auan(t) ° Aan(t) - pkn(t) ° 0 for some kEN, n€N, and 
a€A(k) during a finite time interval [tl,t2]C[O,T], it follows that 

d 	al, 

(31) —   ° aan(t) - pkn(t) - 0 
dt auan(t) 

d2 	aL 
(32) °•aan(t) -7.kn(t) - O. 

dt2  Lan(t) 

Let us consider an arc whose tail node is k and head node is s, 
that is, a-(k,$)€A. 	Using the costate equation (26) we may rewrite 
equations (31) and (32) as follows: 

(33) - Ca'[xa(t)] + fa[aan(t) - psn(t)] - pkn(t) - 0 

(34) - Ca"[xa(t)]xan(t) + (a[aan(t) - Psn(t)] -71kn(t) - 0  

Substituting the state equation (24) and relationship (31) into the 
equation (34) yields an explicit expression for the singular control: 

(35) uan(t) 
a[µkn(t) - µsn(t)] - µkn(t) + f axan(t)Ca"[xa(t)] 

 

Ca"[xa(t)] 

V a-(k,$)EA V keN V seN V nEN V te(tl,t2]Ç[O,T], k,'srn. 

An important question now arises as to whether the singular 
control given by (35) is optimal or not. Recently, several necessary 
conditions have been derived to replace the Pontryagin's minimum 
principle so that the singular controls could be tested for optimality. 
In this paper, we shall use the generalized Legendre-Clebsch condition 
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(see Bryson and Ho, 
controls as follows: 

â 
(36) 

1975, 

d2 

dt2 

control 

pp.246-270) 

ôL 
f 

to test the optimality of singular 

	

Ca
~~[xa(t)] 	< 	0. 

strictly convex 	for all 	xa(t), 	the 

	

is satisfied. 	Hence, we can state 
optimal. 	However, 	(36) 	is 	not 	a 

J
—— 

ôua n(t) 

Since 	Ca[xa(t)] 	was 
generalized convexity 
that 	the 	singular 

assumed 
condition 

IL ôua n(t) J 

to be 
(36) 

(35) 	is 
sufficient condition for optimality of singular controls. 

7. ECONOMIC INTERPRETATION OF OPTIMALITY CONDITIONS 

In this section, we shall explore the economic interpretation of 
optimality conditions (24)-(28). To this end we shall derive economic 
interpretations of the Lagrangian, costate variables and Lagrange 
multipliers, respectively. We 'first multiply the Lagrangian (16) by dt: 

(37)Ldt — X Ca[xa(t)]dt + E 	E aan(t)xan(t)dt 
aeA 	aeA neN 

+ E 	E µkn(t)(Skn(t) + 	axan(t) — 	u n(t))dt. 
keN neN 	aeB(k) 	aeA(k~ 

Provided that all flow conservation constraints are binding, (37) can be 
rewritten as 

(38) 	Ldt — E Ca[xa(t)]dt + E 	E aan(t)dxan(t). 
aeA 	aeA neN 

The first term represents the instantaneous total transportation cost 
spent during the time period [t,t+dt]. We may interpret the first term 
as the direct contribution to the performance index J in dollars from 
time t to t+dt. The second term represents the cost incurred by the 
incremental vehicle unit with destination n on arc a during [t,t+dt] and 
it may be interpreted as the indirect contribution to J in dollars. 
Hence, Ldt can be interpreted as the total contribution to J from time t 
to t+dt if the network is in state x(t) and control u(t) is applied. 

We now can understand why the Lagrangian (16) must be minimized 
with respect to the control variables at each time t, as shown in (20). 
If only the first term aeA Ca[xa(t)]dt were minimized at each time t, 
the performance index J would not be minimized because the values of the 
optimal control variables in the vicinity of any time t influence the 
values of the corresponding state variables at all points of time after 
time t. 	It also implies that the indirect influence of the control 
variables in changing the instantaneous total transportation cost rate 
at each time t must be taken into account. Consequently, the Lagrangian 
can be interpreted as a surrogate instantaneous transportation cost rate 
to be minimized at each time t. 
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Let us define J°[x(t),t] as the optimal value function that has 
the minimum value of the performance index J of the control problem (14) 
beginning at initial state x(t) and initial time t: 

1T 

(39) 	J°[x(t),t] — 	min 	E 
J

Ca[xa(r)] dr. 
u(t)€Ax(t) a€A t  

It is well known (see Bryson and Ho, 1975, pp.134) that 

3J°[x(t),t] 

âxa°(t) 

along the optimal state trajectory. Hence, aan(t) can be interpreted as 
the marginal contribution of an additional infinitesimal vehicle unit 
with destination n on arc a at time t to the total transportation cost 
spent during the period [t,T] in the network. Since J°[x(t),t) has the 
dimension of a total cost in dollars, Àa°(t) has the dimension of a 
marginal cost or a shadow price in dollars per vehicle. Therefore, the 
costate variables have an interpretation as the dynamic equivalent of 
the Lagrange multipliers encountered in a nonlinear programming problem. 
The costate variable Aa'(t) is sometimes called the influence function 
because a small increment in xa°(t) results in a small increment in the 
value of J°[x(t),t] at the rate as°(t). 

We shall further establish the economic interpretation of the 
costate variables. Multiplying the costate equation (28) by dt yields 

(41) 	daa°(t) — (— Ca'[xa(t)] + fa[aan(t) — pk°(t)]) dt. 

Integrate (41) from time t to T as follows: 

f
T 

	j(42) 	 daa°(r) — — 
	
[ôL[x(r),u(r),A(r),µ(r)]/ôxa°(r)] dr. 

	

t 	 t 

Because as°(T) — 0, we may rewrite (42) as 

('T  
(43) 	as°(t) — J [aL[x(r),u(r).a(r),p(r)]/axa°(r)] dr. 

t 

Therefore, the marginal cost of a vehicle on arc a with destination n at 
time t is the integral of the surrogate instantaneous marginal 
transportation cost rate, aL/3xa°(t), from time t to T. This suggests 
that Aan(t) includes the cost component of the additional cost burden 
that a small increment in xa°(t) inflicts on each one of the vehicles 
that will traverse arc a in all future instants after the time t. 

We shall conjecture the economic interpretation of the Lagrange 
multipliers associated with the flow conservation constraints. On the 
analogy of an economic interpretation of the Lagrange multiplier derived 
in Benavie (1972, pp.256-259), we know that 
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aJ°[x(t),t] 

3[Skn(t) + E &axan(t)] 
a€B(k) 

Therefore, the Lagrange multiplier pkn(t) can be interpreted as the 
marginal cost (or the shadow price) of a small relaxation of the flow 
conservation constraint hkn[x(t),u(t)]. 	In particular, along the 
optimal state trajectory, it represents the sensitivity of the optimal 
value of J°[x(t),t] to a small increment in the number of vehicles at 
node k with destination n at time t. Assuming that vehicles terminated 
at each destination have no impact on the optimum value of J°[x(t),t], 
we also know that 

ôJ°[x(t),t] 
(45) pnn(t) - 

 

O. 
E €axan(t)] 

aeB(n) 

We are now ready to interpret the Kuhn-Tucker optimality 
conditions (28). The relationship aan(t) > pkn(t) implies that if the 
marginal cost of an additional vehicle on arc a with destination n is 
greater than the marginal cost of an additional vehicle at node k with 
destination n, then no vehicle will enter arc a at time t to travel to 
destination n from node k. Conversely, aan(t) < pkn(t) means that all 
of vehicles generated at node k and vehicles exiting from upstream arcs 
connected to node k will enter arc a at time t in order to travel to 
destination n. 	This interpretation implies that holding a vehicle at 
node k is more expensive than sending it to any downstream arc at time t 
from node k. 	In particular, when aan(t) — pkn(t), the number of 
vehicles entering arc a from node k with destination n at time t will be 
determined as the singular control (35). 

Finally, the optimality conditions (28) are analogous to the flow 
of electricity in that only three cases can occur: [1] no electric 
current flow from a node with lower voltage to a node with higher 
voltage; [2] singular flow between nodes with the same voltage; and [3] 
maximum flow from a node with higher voltage to a node with lower 
voltage. 

8. DYNAMIC GENERALIZATION OF WARDROP'S SECOND PRINCIPLE 

Let us assume that all network users cooperate in minimizing the 
total transportation cost, or the rational behavior of all network users 
is completely controllable by a central traffic authority. Then we may 
state a dynamic generalization of Wardrop's second principle: 

If the instantaneous marginal total costs for all paths that 
are being used are identical and equal to the instantaneous 
minimum marginal total cost at any instant in time for each 
origin-destination pair, then the corresponding flow pattern 
is said to be system optimized. 
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We now wish to ascertain whether a solution of the dynamic system 
optimal traffic assignment model (14), described by time trajectories of 
the state and control variables, corresponds to a dynamic generalization 
of Wardrop's second principle at each instant in time. To this end, let 
us consider a path p connecting an origin node keN and a destination 
node neN, which may be expressed in the generic form as 

(46) P = [ k—km, al. kl. 

 

. km_l, am, km  —n ]. 

 

Let A(p) denote the set of arcs comprising a path p. For each aeA(p), 
the costate equation (26) may be rewritten as 

(47) (Ca'[xa(t)] + aan(t))/ga 	Aan(t) — pkn(t)• 

The left-side term of (47) has the units of instantaneous marginal cost 
because both Ca'[xa(t)] and daan(t)/dt have the units of instantaneous 
marginal cost rate, while ga  has the units of incremental exit flow rate 
per incremental vehicle unit. Obviously, the right-side term of (47) 
has the units of instantaneous marginal cost. 	Let 'p(t) denote the 
instantaneous marginal total cost on path p at time t: 

(48) (1,p(t) = E (Ca'[xa(t)] + aan(t))/ga 	V pePkn  V te[O,T]. 

It may be stated that(t) consists of both static and dynamic terms. 
The term Ca'[xa(t)]/ga is static in the sense that it represents the 
instantaneous marginal cost on arc a where xa(t) is the number of 
vehicles traveling on arc a at time t. 	The term [dAan(t)/dt]/ga  is 
dynamic in the sense that it represents the time rate of change of the 
marginal cost of a vehicle unit on arc a which is weighted by ga. 

Let uan(t) denote the maximum rate of flow entering arc a with 
destination n at time t, which is the sum of Skn(t) and XaeB(k)axan(t). 
We are now in a position to state and prove the following theorem: 

Theorem 2. 	If 0 < uan(t) < ûan(t) for all aeA(p) at some time 
te[O,T], then 4,  (t) — inf (4,b(t): V bePkn) for a solution of the 
dynamic system optimal traffic assignment model (14). 

PROOF. Let pePkn  have the generic form given in (46). Using (47), we 
may write (48) as follows: 

m 
(49) 4P  (t)— E [aai(t) — pki(t)]. 

i-1 

From (28) we know that 0 < uan(t) < uan(t) for all aeA(p) if and only if 

(50) Aai(t) — µklt) 	for i — 1, 	, m. 

It follows at once from (49) and (50) that forpePkn  

aeA(p) 
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m 

(51) 	4) (t) - E [Pkn(i) - µki(t)) - Nkô(t) - Pkm(t) - µkn(t). 
i-1 

Hence, the theorem follows immediately. Q.E.D. 

9. CONCLUSION 

In this paper, we explored only theoretical aspects of the dynamic 
system optimal traffic assignment model. 	The future research must 
include [11 the development of an efficient solution algorithm for a 
large-scale network, and [2] its application to dynamic route guidance 
and traffic control system. Recently, the dynamic user optimal traffic 
assignment model was developed in Wie (1988a, 1988b) and Friesz, Luque, 
Tobin and Wie (1989). 	This model seems to provide a more realistic 
network analysis because it assumes that every network user 
simultaneously minimizes his/her measure of unit path travel cost while 
recognizing both the time-varying nature of travel demands and the 
presence of congestion externalities. 

REFERENCE 

Bryson, A.E. and Y-C Ho (1975), Applied optimal control, revised 
version, John Wiley & Sons, New York 

Friesz, T.L., F.J. Luque, R.L. Tobin and B.W. Wie (1989) "Dynamic 
network traffic assignment considered as a continuous time optimal 
control problem," Operations Research, Volume 37, 6 

Merchant, D.K. (1974) A study of dynamic traffic assignment and 
control, Ph.D. Dissertation, Cornell University 

Merchant, D.K. and G.L. Nemhauser (1978a) "A model and an algorithm 
for the dynamic traffic assignment problems," Transportation Science, 
12, 183-199 

Merchant, D,.K. and G.L. Nemhauser (1978a) "Optimality conditions for 
a dynamic traffic assignment model," Transportation Science, 12, 200-207 

Pontryagin, L.S., V.A. Boltyanski, R.V. Gankrelidge, and E.F. Mishenko 
(1962) The Mathematical Theory of Optimal Process, Wiley, New York 

Wardrops, J.G. (1952) 	"Some theoretical aspects of road traffic 
research," Proceedings. Institute of Civel Engineers, II, 1, 325-378 

Wie, B.W. (1988a) "An application of optimal control theory to dynamic 
user equilibrium traffic assignment," Transporation Research Record, 
in press 

Wie, B.W. (1988b) Dynamic Models of Network Traffic Assignment; A 
Control Theoretic Approach, Ph.D. Dissertation, Department of City and 
Regional Planning, University of Pennsylvania 

504 


